Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Adamczyk K."

Filter results by typing the first few letters
Now showing 1 - 20 of 26
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Belle II silicon vertex detector
    (2016) Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Enami K.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.W.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.
    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector. � 2016 Elsevier B.V.
  • No Thumbnail Available
    Item
    Belle II silicon vertex detector
    (2017) Dutta D.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli Ti.; Baroncelli To.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Caria G.; Casarosa G.; Ceccanti M.; Cervenkov D.; Chendvankar S.R.; Dash N.; De Pietro G.; Divekar S.T.; Dole�al Z.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kambara N.; Kang K.H.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kumar R.; Kun W.; Kvasnicka P.; La Licata C.; Lanceri L.; Lettenbicher J.; Libby J.; Lueck T.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Resmi P.K.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watanabe M.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; Wrkner B.; Yamamoto H.; Yin H.; Yoshinobu T.; Zani L.
    The Belle II experiment at the SuperKEKB asymmetric energy e+e- collider in KEK, Japan will operate at an instantaneous luminosity 40 times larger than that of its predecessor, Belle. It is built with an aim of collecting a huge amount of data (50 ab-1 by 2025) for precise CP violation measurements and new physics search. Thus, we need an accurate vertex determination and reconstruction of low momentum tracks which will be achieved with the help of vertex detector (VXD). The Belle II VXD consists of two layers of DEPFET pixels ('Pixel Detector') and four layers of double-sided silicon microstrip sensors ('Silicon Vertex Detector'), assembled over carbon fibre ribs. In this paper, we discuss about the Belle II Silicon Vertex Detector, especially its design and key features; we also present its module ('ladder') assembly and testing procedures. � 2017 IOP Publishing Ltd and Sissa Medialab srl.
  • No Thumbnail Available
    Item
    Belle II silicon vertex detector (SVD)
    (2018) Bahinipati S.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; De Pietro G.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Gobbo B.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kambara N.; Kang K.H.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Komarov I.; Kumar R.; Kun W.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Libby J.; Lee S.C.; Lueck T.; Maki M.; Mammini P.; Martini A.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Resmi P.K.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watanabe M.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.; Zani L.; (Belle-II SVD Collaboration)
    The Belle II experiment at the SuperKEKB collider in Japan will operate at an unprecedented luminosity of 8� 1035 cm-2 s-1, about 40 times larger than its predecessor, Belle. Its vertex detector is composed of a two-layer DEPFET pixel detector (PXD) and a four layer double-sided silicon microstrip detector (SVD). To achieve a precise decay-vertex position determination and excellent low-momentum tracking under a harsh background condition and high trigger rate of 10 kHz, the SVD employs several innovative techniques. In order to minimize the parasitic capacitance in the signal path, 1748 APV25 ASIC chips, which read out signal from 224 k strip channels, are directly mounted on the modules with the novel Origami concept. The analog signal from APV25 are digitized by a flash ADC system, and sent to the central DAQ as well as to online tracking system based on SVD hits to provide region of interests to the PXD for reducing the latter�s data size to achieve the required bandwidth and data storage space. Furthermore, the state-of-the-art dual phase CO2 cooling solution has been chosen for a combined thermal management of the PXD and SVD system. In this proceedings, we present key design principles, module construction and integration status of the Belle II SVD. � Springer Nature Singapore Pte Ltd. 2018.
  • No Thumbnail Available
    Item
    The Belle II silicon vertex detector assembly and mechanics
    (2017) Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.W.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Lueck T.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.; Belle-II SVD Collaboration
    The Belle II experiment at the asymmetric SuperKEKB collider in Japan will operate at an instantaneous luminosity approximately 50 times greater than its predecessor (Belle). The central feature of the experiment is a vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is CP violation asymmetry in the decays of beauty and charm hadrons, which hinges on a precise charged-track vertex determination and low-momentum track measurement. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision 3D coordinate measurements of the final SVD modules. Finally, some results from the latest test-beam are reported. � 2016 Elsevier B.V.
  • No Thumbnail Available
    Item
    The Belle II SVD data readout system
    (2017) Thalmeier R.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Casarosa G.; Ceccanti M.; Cervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole?al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody? P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Lueck T.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaya I.; Rizzo G.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.
    The Belle II Experiment at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, will explore the asymmetry between matter and antimatter and search for new physics beyond the standard model. 172 double-sided silicon strip detectors are arranged cylindrically in four layers around the collision point to be part of a system which measures the tracks of the collision products of electrons and positrons. A total of 1748 radiation-hard APV25 chips read out 128 silicon strips each and send the analog signals by time-division multiplexing out of the radiation zone to 48 Flash Analog Digital Converter Modules (FADC). Each of them applies processing to the data; for example, it uses a digital finite impulse response filter to compensate line signal distortions, and it extracts the peak timing and amplitude from a set of several data points for each hit, using a neural network. We present an overview of the SVD data readout system, along with front-end electronics, cabling, power supplies and data processing. � 2016 Elsevier B.V.
  • No Thumbnail Available
    Item
    Belle II SVD ladder assembly procedure and electrical qualification
    (2016) Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaya I.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.
    The Belle II experiment at the SuperKEKB asymmetric collider in Japan will operate at a luminosity approximately 50 times larger than its predecessor (Belle). At its heart lies a six-layer vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is time-dependent CP violation asymmetry, which hinges on a precise charged-track vertex determination. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision three dimensional coordinate measurements of the jigs used in assembly as well as of the final SVD modules. � 2015 Elsevier B.V. All rights reserved.
  • No Thumbnail Available
    Item
    Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors
    (2016) Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.
    The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8�1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors. � 2015 Elsevier B.V.
  • No Thumbnail Available
    Item
    A bonding study toward the quality assurance of Belle-II silicon vertex detector modules
    (2016) Kang K.H.; Jeon H.B.; Park H.; Uozumi S.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Joo C.W.; Kandra J.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaia I.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.
    A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor �Origami� method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force. � 2016 Elsevier B.V.
  • No Thumbnail Available
    Item
    Construction and test of the first Belle II SVD ladder implementing the origami chip-on-sensor design
    (2016) Irmler C.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Fr�hwirth R.; Hara K.; Higuchi T.; Horiguchi T.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaia I.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.
    The Belle II Silicon Vertex Detector comprises four layers of double-sided silicon strip detectors (DSSDs), consisting of ladders with two to five sensors each. All sensors are individually read out by APV25 chips with the Origami chip-on-sensor concept for the central DSSDs of the ladders. The chips sit on flexible circuits that are glued on the top of the sensors. This concept allows a low material budget and an efficient cooling of the chips by a single pipe per ladder. We present the construction of the first SVD ladders and results from precision measurements and electrical tests. � 2016 IOP Publishing Ltd and Sissa Medialab srl.
  • No Thumbnail Available
    Item
    Electronics and firmware of the belle II silicon vertex detector readout system
    (2017) Thalmeier R.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipat S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batgnani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Caria G.; Casarosa G.; Ceccant M.; Cervenkov D.; Chendvankar S.R.; Dash N.; De Pietro G.; Divekar S.T.; Dole�al Z.; Dutta D.; Fort F.; Friedl M.; Gobbo B.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kambara N.; Kang K.H.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Komarov I.; Kumar R.; Kun W.; Kvasnicka P.; La Licata C.; Lanceri L.; Lee S.C.; Lettenbichler J.; Libby J.; Lueck T.; Maki M.; Mammini P.; Martni A.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profet A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Resmi P.K.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Taylor G.N.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watanabe M.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.; Zani L.; Belle-II SVD Collaboraton
    The Silicon Vertex Detector of the Belle II Experiment at KEK in Tsukuba, Japan, consists of 172 double-sided strip sensors. They are read out by 1748 APV25 chips, and the analog data are sent out of the radiation zone to 48 modules which convert them to digital. FPGAs then compensate line signal distortions using digital finite impulse response filters and detect data frames from the incoming stream. Then they perform pedestal subtraction, common mode correction and zero suppression, as well as calculate the peak timing and amplitude of each event from a set of data samples using a neural network. � Copyright owned by the author(s) under the terms of the Creative Commons.
  • No Thumbnail Available
    Item
    EMC studies for the vertex detector of the Belle II experiment
    (2016) Thalmeier R.; Iglesias M.; Arteche F.; Echeverria I.; Friedl M.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; Cervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kiesling C.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasnicka P.; Lanceri L.; Lettenbicher J.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Moser H.G.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaia I.; Rizzo G.; Rozanska M.; Rummel S.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.
    The upgrade of the Belle II experiment plans to use a vertex detector based on two different technologies, DEPFET pixel (PXD) technology and double side silicon microstrip (SVD) technology. The vertex electronics are characterized by the topology of SVD bias that forces to design a sophisticated grounding because of the floating power scheme. The complex topology of the PXD power cable bundle may introduce some noise inside the vertex area. This paper presents a general overview of the EMC issues present in the vertex system, based on EMC tests on an SVD prototype and a study of noise propagation in the PXD cable bundle based on Multi-conductor transmission line theory. � 2016 IOP Publishing Ltd and Sissa Medialab srl.
  • No Thumbnail Available
    Item
    Measurement of the ? Lepton Polarization and R (D?) in the Decay B ?d??- ? ?
    (2017) Hirose S.; Iijima T.; Adachi I.; Adamczyk K.; Aihara H.; Al Said S.; Asner D.M.; Atmacan H.; Aulchenko V.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Bakich A.M.; Bansal V.; Barberio E.; Behera P.; Berger M.; Bhuyan B.; Biswal J.; Bondar A.; Bonvicini G.; Bozek A.; Bra?ko M.; Browder T.E.; ?ervenkov D.; Chang P.; Chen A.; Cheon B.G.; Chilikin K.; Chistov R.; Cho K.; Choi Y.; Cinabro D.; Danilov M.; Dash N.; Di Carlo S.; Dingfelder J.; Dole�al Z.; Dr�sal Z.; Dutta D.; Eidelman S.; Epifanov D.; Farhat H.; Fast J.E.; Ferber T.; Fulsom B.G.; Gaur V.; Gabyshev N.; Garmash A.; Goldenzweig P.; Golob B.; Greenwald D.; Grygier J.; Haba J.; Hara K.; Hasenbusch J.; Hayasaka K.; Hayashii H.; Higuchi T.; Hou W.-S.; Hsu C.-L.; Inami K.; Inguglia G.; Ishikawa A.; Itoh R.; Iwasaki Y.; Jacobs W.W.; Jaegle I.; Jin Y.; Joffe D.; Joo K.K.; Julius T.; Kato Y.; Kawasaki T.; Kichimi H.; Kiesling C.; Kim D.Y.; Kim J.B.; Kim K.T.; Kim M.J.; Kim S.H.; Kinoshita K.; Kody� P.; Korpar S.; Kotchetkov D.; Kri�an P.; Krokovny P.; Kuhr T.; Kulasiri R.; Kumar R.; Kwon Y.-J.; Lange J.S.; Li C.H.; Li L.; Li Y.; Li Gioi L.; Libby J.; Liventsev D.; Lubej M.; Luo T.; Macnaughton J.; Masuda M.; Matsuda T.; Matvienko D.; Miyabayashi K.; Miyake H.; Miyata H.; Mizuk R.; Mohanty G.B.; Moon H.K.; Mori T.; Mussa R.; Nakao M.; Nanut T.; Nath K.J.; Natkaniec Z.; Nayak M.; Niiyama M.; Nisar N.K.; Nishida S.; Ogawa S.; Okuno S.; Ono H.; Onuki Y.; Ostrowicz W.; Pakhlov P.; Pakhlova G.; Pal B.; Park C.W.; Park H.; Paul S.; Pes�ntez L.; Pestotnik R.; Piilonen L.E.; Prasanth K.; Ritter M.; Rostomyan A.; Rozanska M.; Sakai Y.; Sandilya S.; Santelj L.; Sanuki T.; Sato Y.; Savinov V.; Schl�ter T.; Schneider O.; Schnell G.; Schwanda C.; Seino Y.; Senyo K.; Seon O.; Sevior M.E.; Shebalin V.; Shen C.P.; Shibata T.-A.; Shiu J.-G.; Simon F.; Sokolov A.; Solovieva E.; Stari? M.; Strube J.F.; Sumisawa K.; Sumiyoshi T.; Takizawa M.; Tamponi U.; Tenchini F.; Trabelsi K.; Uchida M.; Uglov T.; Unno Y.; Uno S.; Urquijo P.; Ushiroda Y.; Usov Y.; Van Hulse C.; Varner G.; Varvell K.E.; Vossen A.; Wang C.H.; Wang M.-Z.; Wang P.; Watanabe M.; Watanabe Y.; Widmann E.; Won E.; Yamashita Y.; Ye H.; Yelton J.; Yuan C.Z.; Zhang Z.P.; Zhilich V.; Zhulanov V.; Zupanc A.; (Belle Collaboration)
    We report the first measurement of the ? lepton polarization P?(D?) in the decay B?D??-?? as well as a new measurement of the ratio of the branching fractions R(D?)=B(B?D??-??)/B(B?D?-?), where - denotes an electron or a muon, and the ? is reconstructed in the modes ?-??-?? and ?-??-??. We use the full data sample of 772�106 BB pairs recorded with the Belle detector at the KEKB electron-positron collider. Our results, P?(D?)=-0.38�0.51(stat)-0.16+0.21(syst) and R(D?)=0.270�0.035(stat)-0.025+0.028(syst), are consistent with the theoretical predictions of the standard model. � 2017 American Physical Society.
  • No Thumbnail Available
    Item
    Measurement of the ? lepton polarization and R(D*) in the decay B�?D*???�? with one-prong hadronic ? decays at Belle
    (2018) Hirose S.; Iijima T.; Adachi I.; Adamczyk K.; Aihara H.; Al Said S.; Asner D.M.; Atmacan H.; Aushev T.; Ayad R.; Aziz T.; Babu V.; Badhrees I.; Bakich A.M.; Bansal V.; Berger M.; Bhardwaj V.; Bhuyan B.; Biswal J.; Bondar A.; Bozek A.; Bra?ko M.; Browder T.E.; ?ervenkov D.; Chang M.-C.; Chang P.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Cho K.; Choi S.-K.; Choi Y.; Choudhury S.; Cinabro D.; Czank T.; Dash N.; Di Carlo S.; Dole�al Z.; Dutta D.; Eidelman S.; Fast J.E.; Ferber T.; Fulsom B.G.; Garg R.; Gaur V.; Gabyshev N.; Garmash A.; Gelb M.; Giri A.; Goldenzweig P.; Golob B.; Guan Y.; Guido E.; Haba J.; Hara K.; Hayasaka K.; Hayashii H.; Hedges M.T.; Higuchi T.; Hou W.-S.; Hsu C.-L.; Inami K.; Inguglia G.; Ishikawa A.; Itoh R.; Iwasaki M.; Jaegle I.; Jeon H.B.; Jin Y.; Julius T.; Kang K.H.; Karyan G.; Kawasaki T.; Kim D.Y.; Kim J.B.; Kim S.H.; Kim Y.J.; Kinoshita K.; Kody� P.; Korpar S.; Kotchetkov D.; Kri�an P.; Kroeger R.; Krokovny P.; Kuhr T.; Kulasiri R.; Kumar R.; Kuzmin A.; Kwon Y.-J.; Lange J.S.; Lee I.S.; Li L.K.; Li Y.; Li Gioi L.; Libby J.; Liventsev D.; Lubej M.; Matsuda T.; Miyabayashi K.; Miyata H.; Mohanty G.B.; Mohanty S.; Moon H.K.; Mori T.; Mussa R.; Nakamura K.R.; Nakao M.; Nanut T.; Nath K.J.; Natkaniec Z.; Niiyama M.; Nisar N.K.; Nishida S.; Ogawa S.; Okuno S.; Ono H.; Pal B.; Pardi S.; Park C.W.; Park H.; Paul S.; Pestotnik R.; Piilonen L.E.; Popov V.; Ritter M.; Rostomyan A.; Rozanska M.; Sakai Y.; Salehi M.; Sandilya S.; Sato Y.; Schneider O.; Schnell G.; Schwanda C.; Schwartz A.J.; Seino Y.; Senyo K.; Sevior M.E.; Shebalin V.; Shibata T.-A.; Shimizu N.; Shiu J.-G.; Simon F.; Sokolov A.; Solovieva E.; Stari? M.; Strube J.F.; Stypula J.; Sumihama M.; Sumisawa K.; Sumiyoshi T.; Takizawa M.; Tamponi U.; Tanida K.; Tenchini F.; Trabelsi K.; Uchida M.; Uglov T.; Uno S.; Urquijo P.; Van Hulse C.; Varner G.; Varvell K.E.; Vorobyev V.; Vossen A.; Wang C.H.; Wang M.-Z.; Wang P.; Wang X.L.; Wehle S.; Widmann E.; Won E.; Yamamoto H.; Yamashita Y.; Ye H.; Yuan C.Z.; Yusa Y.; Zakharov S.; Zhang Z.P.; Zhilich V.; Zhukova V.; Zhulanov V.; Zupanc A.; (The Belle Collaboration)
    With the full data sample of 772�106 BB? pairs recorded by the Belle detector at the KEKB electron-positron collider, the decay B??D??-??? is studied with the hadronic ? decays ?-??-?? and ?-??-??. The ? polarization P?(D?) in two-body hadronic ? decays is measured, as well as the ratio of the branching fractions R(D?)=B(B??D??-???)/B(B??D?-??), where - denotes an electron or a muon. Our results, P?(D?)=-0.38�0.51(stat)-0.16+0.21(syst) and R(D?)=0.270�0.035(stat)-0.025+0.028(syst), are consistent with the theoretical predictions of the standard model. The polarization values of P?(D?)>+0.5 are excluded at the 90% confidence level. � 2018 authors. Published by the American Physical Society.
  • No Thumbnail Available
    Item
    Measurement of the branching fraction of B ?d (?)?? at Belle using hadronic tagging in fully reconstructed events
    (2018) Vossen A.; Adachi I.; Adamczyk K.; Aihara H.; Al Said S.; Asner D.M.; Aulchenko V.; Aushev T.; Ayad R.; Badhrees I.; Bansal V.; Bele�o C.; Bhuyan B.; Bilka T.; Biswal J.; Bondar A.; Bozek A.; Browder T.E.; ?ervenkov D.; Chen A.; Cheon B.G.; Chilikin K.; Cho K.; Choi S.-K.; Choi Y.; Choudhury S.; Cinabro D.; Cunliffe S.; Dash N.; Di Carlo S.; Dole�al Z.; Eidelman S.; Fast J.E.; Ferber T.; Fulsom B.G.; Garg R.; Gaur V.; Gabyshev N.; Garmash A.; Gelb M.; Goldenzweig P.; Guido E.; Hara T.; Hartbrich O.; Hayasaka K.; Hayashii H.; Hedges M.T.; Hirose S.; Hou W.-S.; Inami K.; Ishikawa A.; Itoh R.; Iwasaki M.; Iwasaki Y.; Jacobs W.W.; Jaegle I.; Jia S.; Jin Y.; Julius T.; Kim D.Y.; Kim H.J.; Kim J.B.; Kim K.T.; Kim S.H.; Kinoshita K.; Korpar S.; Kotchetkov D.; Kri�an P.; Kroeger R.; Krokovny P.; Kuhr T.; Kulasiri R.; Kumita T.; Kwon Y.-J.; Lange J.S.; Lee I.S.; Lee S.C.; Li L.K.; Li Y.; Li Gioi L.; Libby J.; Liventsev D.; Lubej M.; Masuda M.; Merola M.; Miyabayashi K.; Miyata H.; Mizuk R.; Moon H.K.; Mussa R.; Nakano E.; Nakao M.; Nanut T.; Nath K.J.; Nayak M.; Niiyama M.; Nishida S.; Ono H.; Pakhlov P.; Pakhlova G.; Pal B.; Pardi S.; Park H.; Paul S.; Pedlar T.K.; Pestotnik R.; Piilonen L.E.; Popov V.; Ritter M.; Rostomyan A.; Russo G.; Sahoo D.; Sakai Y.; Salehi M.; Sandilya S.; Santelj L.; Sanuki T.; Savinov V.; Schneider O.; Schnell G.; Schwanda C.; Schwartz A.J.; Seino Y.; Senyo K.; Shebalin V.; Shen C.P.; Shibata T.-A.; Shimizu N.; Shiu J.-G.; Simon F.; Solovieva E.; Stari? M.; Strube J.F.; Sumihama M.; Sumiyoshi T.; Takizawa M.; Tamponi U.; Tanida K.; Tenchini F.; Trabelsi K.; Uchida M.; Uglov T.; Unno Y.; Uno S.; Urquijo P.; Usov Y.; Van Hulse C.; Varner G.; Varvell K.E.; Vinokurova A.; Vorobyev V.; Wang B.; Wang C.H.; Wang M.-Z.; Wang P.; Watanabe M.; Widmann E.; Won E.; Ye H.; Yusa Y.; Zakharov S.; Zhang Z.P.; Zhilich V.; Zhukova V.; Zhulanov V.; Zupanc A.
    We report a measurement of the branching fractions of the decays B?D(?)??. The analysis uses 772�106 BB. pairs produced in e+e-?(4S) data recorded by the Belle experiment at the KEKB asymmetric-energy e+e- collider. The tagging B meson in the decay is fully reconstructed in a hadronic decay mode. On the signal side, we reconstruct the decay B?D(?)??(=e,?). The measured branching fractions are B(B+?D-?++?)=[4.55�0.27 (stat.)�0.39 (syst.)]�10-3, B(B0?D.0?-+?)=[4.05�0.36 (stat.)�0.41 (syst.)]�10-3, B(B+?D?-?++?)=[6.03�0.43 (stat.)�0.38 (syst.)]�10-3, and B(B0?D.?0?-+?)=[6.46�0.53 (stat.)�0.52 (syst.)]�10-3. These are in good agreement with the current world-average values. � 2018 authors. Published by the American Physical Society.
  • No Thumbnail Available
    Item
    Measurement of the branching fraction of B+ ? ?+?? decays with the semileptonic tagging method and the full Belle data sample
    (2014) Abdesselam A.; Adachi I.; Adamczyk K.; Aihara H.; Al Said S.; Arinstein K.; Arita Y.; Asner D.M.; Aso T.; Aulchenko V.; Aushev T.; Ayad R.; Aziz T.; Bahinipati S.; Bakich A.M.; Bala A.; Ban Y.; Bansal V.; Barberio E.; Barrett M.; Bartel W.; Bay A.; Bedny I.; Behera P.; Belhorn M.; Belous K.; Bhardwaj V.; Bhuyan B.; Bischofberger M.; Blyth S.; Bobrov A.; Bondar A.; Bonvicini G.; Bookwalter C.; Boulahouache C.; Bozek A.; Bra?ko M.; Brodzicka J.; Brovchenko O.; Browder T.E.; ?ervenkov D.; Chang M.-C.; Chang P.; Chao Y.; Chekelian V.; Chen A.; Chen K.-F.; Chen P.; Cheon B.G.; Chilikin K.; Chistov R.; Cho K.; Chobanova V.; Choi S.-K.; Choi Y.; Cinabro D.; Crnkovic J.; Dalseno J.; Danilov M.; Dingfelder J.; Dole�al Z.; Dr�sal Z.; Drutskoy A.; Dutta D.; Dutta K.; Eidelman S.; Epifanov D.; Esen S.; Farhat H.; Fast J.E.; Feindt M.; Ferber T.; Frey A.; Frost O.; Fujikawa M.; Gaur V.; Gabyshev N.; Ganguly S.; Garmash A.; Gillard R.; Giordano F.; Glattauer R.; Goh Y.M.; Golob B.; Grosse Perdekamp M.; Grzymkowska O.; Guo H.; Haba J.; Hamer P.; Han Y.L.; Hara K.; Hara T.; Hasegawa Y.; Hasenbusch J.; Hayasaka K.; Hayashii H.; He X.H.; Heck M.; Heffernan D.; Heider M.; Higuchi T.; Himori S.; Horiguchi T.; Horii Y.; Hoshi Y.; Hoshina K.; Hou W.-S.; Hsiung Y.B.; Huschle M.; Hyun H.J.; Igarashi Y.; Iijima T.; Imamura M.; Inami K.; Ishikawa A.; Itagaki K.; Itoh R.; Iwabuchi M.; Iwasaki M.; Iwasaki Y.; Iwashita T.; Iwata S.; Jaegle I.; Jones M.; Joo K.K.; Julius T.; Kah D.H.; Kakuno H.; Kang J.H.; Kapusta P.; Kataoka S.U.; Katayama N.; Kato E.; Kato Y.; Katrenko P.; Kawai H.; Kawasaki T.; Kichimi H.; Kiesling C.; Kim B.H.; Kim D.Y.; Kim H.J.; Kim H.O.; Kim J.B.; Kim J.H.; Kim K.T.; Kim M.J.; Kim S.K.; Kim Y.J.; Kinoshita K.; Kleinwort C.; Klucar J.; Ko B.R.; Kobayashi N.; Koblitz S.; Kody� P.; Koga Y.; Korpar S.; Kouzes R.T.; Kri�an P.; Krokovny P.; Kronenbitter B.; Kuhr T.; Kumar R.; Kumita T.; Kurihara E.; Kuroki Y.; Kuzmin A.; Kvasni?ka P.; Kwon Y.-J.; Lai Y.-T.; Lange J.S.; Lee S.-H.; Leitgab M.; Leitner R.; Li J.; Li X.; Li Y.; Li Gioi L.; Libby J.; Limosani A.; Liu C.; Liu Y.; Liu Z.Q.; Liventsev D.; Louvot R.; Lukin P.; MacNaughton J.; Matvienko D.; Matyja A.; McOnie S.; Mikami Y.; Miyabayashi K.; Miyachi Y.; Miyake H.; Miyata H.; Miyazaki Y.; Mizuk R.; Mohanty G.B.; Mohapatra D.; Moll A.; Mori T.; Moser H.-G.; M�ller T.; Muramatsu N.; Mussa R.; Nagamine T.; Nagasaka Y.; Nakahama Y.; Nakamura I.; Nakamura K.; Nakano E.; Nakano H.; Nakano T.; Nakao M.; Nakayama H.; Nakazawa H.; Nanut T.; Natkaniec Z.; Nayak M.; Nedelkovska E.; Negishi K.; Neichi K.; Ng C.; Niebuhr C.; Niiyama M.; Nisar N.K.; Nishida S.; Nishimura K.; Nitoh O.; Nozaki T.; Ogawa A.; Ogawa S.; Ohshima T.; Okuno S.; Olsen S.L.; Ono Y.; Onuki Y.; Ostrowicz W.; Oswald C.; Ozaki H.; Pakhlov P.; Pakhlova G.; Palka H.; Panzenb�ck E.; Park C.-S.; Park C.W.; Park H.; Park H.K.; Park K.S.; Peak L.S.; Pedlar T.K.; Peng T.; Pesantez L.; Pestotnik R.; Peters M.; Petri? M.; Piilonen L.E.; Poluektov A.; Prim M.; Prothmann K.; Reisert B.; Ribe�l E.; Ritter M.; R�hrken M.; Rorie J.; Rostomyan A.; Rozanska M.; Ryu S.; Sahoo H.; Saito T.; Sakai K.; Sakai Y.; Sandilya S.; Santel D.; Santelj L.; Sanuki T.; Sasao N.; Sato Y.; Savinov V.; Schneider O.; Schnell G.; Sch�nmeier P.; Schram M.; Schwanda C.; Schwartz A.J.; Schwenker B.; Seidl R.; Sekiya A.; Semmler D.; Senyo K.; Seon O.; Sevior M.E.; Shang L.; Shapkin M.; Shebalin V.; Shen C.P.; Shibata T.-A.; Shibuya H.; Shinomiya S.; Shiu J.-G.; Shwartz B.; Sibidanov A.; Simon F.; Singh J.B.; Sinha R.; Smerkol P.; Sohn Y.-S.; Sokolov A.; Soloviev Y.; Solovieva E.; Stani? S.; Stari? M.; Steder M.; Stypula J.; Sugihara S.; Sugiyama A.; Sumihama M.; Sumisawa K.; Sumiyoshi T.; Suzuki K.; Suzuki S.; Suzuki S.Y.; Suzuki Z.; Takeichi H.; Tamponi U.; Tanaka M.; Tanaka S.; Tanida K.; Taniguchi N.; Tatishvili G.; Taylor G.N.; Teramoto Y.; Thorne F.; Tikhomirov I.; Trabelsi K.; Tse Y.F.; Tsuboyama T.; Uchida M.; Uchida T.; Uchida Y.; Uehara S.; Ueno K.; Uglov T.; Unno Y.; Uno S.; Urquijo P.; Ushiroda Y.; Usov Y.; Vahsen S.E.; Van Hulse C.; Vanhoefer P.; Varner G.; Varvell K.E.; Vervink K.; Vinokurova A.; Vorobyev V.; Vossen A.; Wagner M.N.; Wang C.H.; Wang J.; Wang M.-Z.; Wang P.; Wang X.L.; Watanabe M.; Watanabe Y.; Wedd R.; Wehle S.; White E.; Wiechczynski J.; Williams K.M.; Won E.; Yabsley B.D.; Yamada S.; Yamamoto H.; Yamaoka J.; Yamashita Y.; Yamauchi M.; Yashchenko S.; Yook Y.; Yuan C.Z.; Yusa Y.; Zander D.; Zhang C.C.; Zhang L.M.; Zhang Z.P.; Zhao L.; Zhilich V.; Zhou P.; Zhulanov V.; Zivko T.; Zupanc A.; Zwahlen N.; Zyukova O.
    We report a measurement of the branching fraction of B+ ? ?+?? decays using a data sample of 772 � 106BB pairs, collected at the ?(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e? collider. We reconstruct the accompanying B meson in a semileptonic decay and detect the B+ ? ?+?? candidate in the recoiling event. We obtain a branching fraction of B(B+ ? ?+??) = [1.25 � 0.28(stat.) � 0.27(syst.)] � 10?4. This result is in good agreement with previous measurements and the expectation from calculations based on the Standard Model. � 2014 Technische Universitaet Wien. All rights reserved.
  • No Thumbnail Available
    Item
    Measurement of the branching ratio of B0 ?d?+?- ? ? relative to B 0 ?d?+? ??? decays with a semileptonic tagging method
    (2016) Sato Y.; Iijima T.; Adamczyk K.; Aihara H.; Asner D.M.; Atmacan H.; Aushev T.; Ayad R.; Aziz T.; Babu V.; Badhrees I.; Bakich A.M.; Bansal V.; Behera P.; Bhardwaj V.; Bhuyan B.; Biswal J.; Bonvicini G.; Bozek A.; Bra?ko M.; ?ervenkov D.; Chang P.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Chistov R.; Cho K.; Chobanova V.; Choi Y.; Cinabro D.; Danilov M.; Dash N.; Di Carlo S.; Dole�al Z.; Dutta D.; Eidelman S.; Epifanov D.; Farhat H.; Fast J.E.; Ferber T.; Fulsom B.G.; Gaur V.; Gabyshev N.; Garmash A.; Goldenzweig P.; Golob B.; Greenwald D.; Hara K.; Hara T.; Hasenbusch J.; Hayasaka K.; Hayashii H.; Hirose S.; Horiguchi T.; Hou W.-S.; Inami K.; Ishikawa A.; Itoh R.; Iwasaki Y.; Jaegle I.; Jeon H.B.; Joffe D.; Julius T.; Kang K.H.; Kato Y.; Katrenko P.; Kawasaki T.; Kim D.Y.; Kim J.B.; Kim K.T.; Kim M.J.; Kim S.H.; Kim Y.J.; Kinoshita K.; Kody� P.; Korpar S.; Kotchetkov D.; Krokovny P.; Kuhr T.; Kumar R.; Kwon Y.-J.; Lange J.S.; Li C.H.; Li L.; Li Y.; Li Gioi L.; Libby J.; Liventsev D.; Luo T.; Masuda M.; Matsuda T.; Matvienko D.; Miyabayashi K.; Miyata H.; Mizuk R.; Mohanty G.B.; Moll A.; Moon H.K.; Nakamura K.R.; Nakano E.; Nakao M.; Nanut T.; Nath K.J.; Natkaniec Z.; Nayak M.; Negishi K.; Nisar N.K.; Nishida S.; Ogawa S.; Okuno S.; Olsen S.L.; Onuki Y.; Pakhlov P.; Pakhlova G.; Pal B.; Park C.-S.; Paul S.; Pedlar T.K.; Pes�ntez L.; Pestotnik R.; Petri? M.; Piilonen L.E.; Purohit M.V.; Rauch J.; Rostomyan A.; Rozanska M.; Sakai Y.; Sandilya S.; Santelj L.; Savinov V.; Schl�ter T.; Schneider O.; Schnell G.; Schwanda C.; Schwartz A.J.; Seino Y.; Senyo K.; Seon O.; Sevior M.E.; Shebalin V.; Shen C.P.; Shibata T.-A.; Shiu J.-G.; Shwartz B.; Simon F.; Solovieva E.; Stani? S.; Stari? M.; Strube J.F.; Sumiyoshi T.; Takizawa M.; Tamponi U.; Tenchini F.; Trabelsi K.; Uchida M.; Uno S.; Urquijo P.; Ushiroda Y.; Usov Y.; Van Hulse C.; Varner G.; Vinokurova A.; Vorobyev V.; Wang C.H.; Wang M.-Z.; Wang P.; Watanabe Y.; Williams K.M.; Won E.; Yamamoto H.; Yamaoka J.; Yamashita Y.; Yelton J.; Yook Y.; Yuan C.Z.; Yusa Y.; Zhang Z.P.; Zhilich V.; Zhukova V.; Zhulanov V.; Zupanc A.; Belle Collaboration
    We report a measurement of the ratio R(D?)=B(B0?D?+?-??)/B(B0?D?+?), where denotes an electron or a muon. The results are based on a data sample containing 772�106 BB pairs recorded at the (4S) resonance with the Belle detector at the KEKB e+e- collider. We select a sample of B0B0 pairs by reconstructing both B mesons in semileptonic decays to D? �. We measure R(D?)=0.302�0.030(stat)�0.011(syst), which is within 1.6? of the Standard Model theoretical expectation, where the standard deviation ? includes systematic uncertainties. We use this measurement to constrain several scenarios of new physics in a model-independent approach. � 2016 American Physical Society.
  • No Thumbnail Available
    Item
    Measurement of the D?? polarization in the decay B0 ? D???+??
    (2018) Abdesselam A.; Adachi I.; Adamczyk K.; Ahn J.K.; Aihara H.; Al Said S.; Arinstein K.; Arita Y.; Asner D.M.; Atmacan H.; Aulchenko V.; Aushev T.; Ayad R.; Aziz T.; Babu V.; Badhrees I.; Bahinipati S.; Bakich A.M.; Ban Y.; Bansal V.; Barberio E.; Barrett M.; Bartel W.; Behera P.; Bele�o C.; Belous K.; Berger M.; Bernlochner F.; Besson D.; Bhardwaj V.; Bhuyan B.; Bilka T.; Biswal J.; Bloomfield T.; Bobrov A.; Bondar A.; Bonvicini G.; Bozek A.; Bra?ko M.; Braun N.; Breibeck F.; Browder T.E.; Campajola M.; Cao L.; Caria G.; ?ervenkov D.; Chang M.-C.; Chang P.; Chao Y.; Cheaib R.; Chekelian V.; Chen A.; Chen K.-F.; Cheon B.G.; Chilikin K.; Chistov R.; Cho H.E.; Cho K.; Chobanova V.; Choi S.-K.; Choi Y.; Choudhury S.; Cinabro D.; Crnkovic J.; Cunliffe S.; Czank T.; Danilov M.; Dash N.; Di Carlo S.; Dingfelder J.; Dole�al Z.; Dong T.V.; Dossett D.; Dr�sal Z.; Drutskoy A.; Dubey S.; Dutta D.; Eidelman S.; Epifanov D.; Fast J.E.; Feindt M.; Ferber T.; Frey A.; Frost O.; Fulsom B.G.; Garg R.; Gaur V.; Gabyshev N.; Garmash A.; Gelb M.; Gemmler J.; Getzkow D.; Giordano F.; Giri A.; Goldenzweig P.; Golob B.; Greenwald D.; Perdekamp M.G.; Grygier J.; Grzymkowska O.; Guan Y.; Guido E.; Guo H.; Haba J.; Hamer P.; Hara K.; Hara T.; Hasegawa Y.; Hasenbusch J.; Hayasaka K.; Hayashii H.; He X.H.; Heck M.; Hedges M.T.; Heffernan D.; Heider M.; Heller A.; Higuchi T.; Hirose S.; Horiguchi T.; Hoshi Y.; Hoshina K.; Hou W.-S.; Hsiung Y.B.; Hsu C.-L.; Huang K.; Huschle M.; Igarashi Y.; Iijima T.; Imamura M.; Inami K.; Inguglia G.; Ishikawa A.; Itagaki K.; Itoh R.; Iwasaki M.; Iwasaki Y.; Iwata S.; Jacobs W.W.; Jaegle I.; Jeon H.B.; Jia S.; Jin Y.; Joffe D.; Jones M.; Joo C.W.; Joo K.K.; Julius T.; Kahn J.; Kakuno H.; Kaliyar A.B.; Kang J.H.; Kang K.H.; Kapusta P.; Karyan G.; Kataoka S.U.; Kato E.; Kato Y.; Katrenko P.; Kawai H.; Kawasaki T.; Keck T.; Kichimi H.; Kiesling C.; Kim B.H.; Kim C.H.; Kim D.Y.; Kim H.J.; Kim H.-J.; Kim J.B.; Kim K.T.; Kim S.H.; Kim S.K.; Kim Y.J.; Kimmel T.; Kindo H.; Kinoshita K.; Kleinwort C.; Klucar J.; Kobayashi N.; Kody� P.; Koga Y.; Konno T.; Korpar S.; Kotchetkov D.; Kouzes R.T.; Kri�an P.; Kroeger R.; Krohn J.-F.; Krokovny P.; Kronenbitter B.; Kuhr T.; Kulasiri R.; Kumar R.; Kumita T.; Kurihara E.; Kuroki Y.; Kuzmin A.; Kvasni?ka P.; Kwon Y.-J.; Lai Y.-T.; Lalwani K.; Lange J.S.; Lee I.S.; Lee J.K.; Lee J.Y.; Lee S.C.; Leitgab M.; Leitner R.; Levit D.; Lewis P.; Li C.H.; Li H.; Li L.K.; Li Y.; Li Y.B.; Li Gioi L.; Libby J.; Lieret K.; Limosani A.; Liptak Z.; Liu C.; Liu Y.; Liventsev D.; Loos A.; Louvot R.; Lu P.-C.; Lubej M.; Luo T.; MacNaughton J.; Masuda M.; Matsuda T.; Matvienko D.; McNeil J.T.; Merola M.; Metzner F.; Mikami Y.; Miyabayashi K.; Miyachi Y.; Miyake H.; Miyata H.; Miyazaki Y.; Mizuk R.; Mohanty G.B.; Mohanty S.; Moon H.K.; Moon T.J.; Mori T.; Morii T.; Moser H.-G.; Mrvar M.; M�ller T.; Muramatsu N.; Mussa R.; Nagasaka Y.; Nakahama Y.; Nakamura I.; Nakamura K.R.; Nakano E.; Nakano H.; Nakano T.; Nakao M.; Nakayama H.; Nakazawa H.; Nanut T.; Nath K.J.; Natkaniec Z.; Nayak M.; Neichi K.; Ng C.; Niebuhr C.; Niiyama M.; Nisar N.K.; Nishida S.; Nishimura K.; Nitoh O.; Ogawa A.; Ogawa K.; Ogawa S.; Ohshima T.; Okuno S.; Olsen S.L.; Ono H.; Ono Y.; Onuki Y.; Ostrowicz W.; Oswald C.; Ozaki H.; Pakhlov P.; Pakhlova G.; Pal B.; Panzenb�ck E.; Pardi S.; Park C.-S.; Park C.W.; Park H.; Park K.S.; Park S.-H.; Patra S.; Paul S.; Pavelkin I.; Pedlar T.K.; Peng T.; Pes�ntez L.; Pestotnik R.; Peters M.; Piilonen L.E.; Popov V.; Prasanth K.; Prencipe E.; Prim M.; Prothmann K.; Purohit M.V.; Rabusov A.; Rauch J.; Reisert B.; Resmi P.K.; Ribe�l E.; Ritter M.; Rorie J.; Rostomyan A.; Rozanska M.; Rummel S.; Russo G.; Sahoo D.; Sahoo H.; Saito T.; Sakai Y.; Salehi M.; Sandilya S.; Santel D.; Santelj L.; Sanuki T.; Sasaki J.; Sasao N.; Sato Y.; Savinov V.; Schl�ter T.; Schneider O.; Schnell G.; Sch�nmeier P.; Schram M.; Schueler J.; Schwanda C.; Schwartz A.J.; Schwenker B.; Seidl R.; Seino Y.; Semmler D.; Senyo K.; Seon O.; Seong I.S.; Sevior M.E.; Shang L.; Shapkin M.; Shebalin V.; Shen C.P.; Shibata T.-A.; Shibuya H.; Shinomiya S.; Shiu J.-G.; Shwartz B.; Sibidanov A.; Simon F.; Singh J.B.; Sinha R.; Smith K.; Sokolov A.; Soloviev Y.; Solovieva E.; Stani? S.; Stari? M.; Steder M.; Stottler Z.; Strube J.F.; Stypula J.; Sugihara S.; Sugiyama A.; Sumihama M.; Sumisawa K.; Sumiyoshi T.; Sutcliffe W.; Suzuki K.; Suzuki K.; Suzuki S.; Suzuki S.Y.; Suzuki Z.; Takeichi H.; Takizawa M.; Tamponi U.; Tanaka M.; Tanaka S.; Tanida K.; Taniguchi N.; Tao Y.; Taylor G.N.; Tenchini F.; Teramoto Y.; Trabelsi K.; Tsuboyama T.; Uchida M.; Uchida T.; Ueda I.; Uehara S.; Uglov T.; Unno Y.; Uno S.; Urquijo P.; Ushiroda Y.; Usov Y.; Vahsen S.E.; Van Hulse C.; Van Tonder R.; Vanhoefer P.; Varner G.; Varvell K.E.; Vervink K.; Vinokurova A.; Vorobyev V.; Vossen A.; Wagner M.N.; Waheed E.; Wang B.; Wang C.H.; Wang M.-Z.; Wang P.; Wang X.L.; Watanabe M.; Watanabe Y.; Watanuki S.; Wedd R.; Wehle S.; Widmann E.; Wiechczynski J.; Williams K.M.; Won E.; Yabsley B.D.; Yamada S.; Yamamoto H.; Yamashita Y.; Yang S.B.; Yashchenko S.; Ye H.; Yelton J.; Yin J.H.; Yook Y.; Yuan C.Z.; Yusa Y.; Zakharov S.; Zhang C.C.; Zhang J.; Zhang L.M.; Zhang Z.P.; Zhao L.; Zhilich V.; Zhukova V.; Zhulanov V.; Zivko T.; Zupanc A.; Zwahlen N.
    We report the first measurement of the D?? meson polarization in the decay B0 ? D???+?? using the full data sample of 772�106 BB� pairs recorded with the Belle detector at the KEKB electron-positron collider. Our result, FLD? = 0.60 �0.08(stat) �0.04(sys), where FLD? denotes the D?? meson longitudinal polarization fraction, agrees within about 1.7 standard deviations of the standard model prediction. � 2018 Heidelberg University. All rights reserved.
  • No Thumbnail Available
    Item
    Measurement of the decay B ?d??? in fully reconstructed events and determination of the Cabibbo-Kobayashi-Maskawa matrix element |Vcb |
    (2016) Glattauer R.; Schwanda C.; Abdesselam A.; Adachi I.; Adamczyk K.; Aihara H.; Al Said S.; Asner D.M.; Aushev T.; Ayad R.; Aziz T.; Badhrees I.; Bakich A.M.; Bansal V.; Barberio E.; Bhuyan B.; Biswal J.; Bonvicini G.; Bozek A.; Bra?ko M.; Breibeck F.; Browder T.E.; ?ervenkov D.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Chistov R.; Cho K.; Chobanova V.; Choi Y.; Cinabro D.; Dalseno J.; Danilov M.; Dash N.; Dingfelder J.; Dole�al Z.; Drutskoy A.; Dutta D.; Eidelman S.; Farhat H.; Fast J.E.; Ferber T.; Frey A.; Fulsom B.G.; Gaur V.; Gabyshev N.; Garmash A.; Gillard R.; Goh Y.M.; Goldenzweig P.; Golob B.; Greenwald D.; Haba J.; Hamer P.; Hara T.; Hasenbusch J.; Hayasaka K.; Hayashii H.; Hou W.-S.; Hsu C.-L.; Iijima T.; Inami K.; Inguglia G.; Ishikawa A.; Jeon H.B.; Joffe D.; Joo K.K.; Julius T.; Kang K.H.; Kato E.; Kawasaki T.; Kiesling C.; Kim D.Y.; Kim J.B.; Kim J.H.; Kim K.T.; Kim M.J.; Kim S.H.; Kim Y.J.; Kinoshita K.; Kody� P.; Korpar S.; Kri�an P.; Krokovny P.; Kuhr T.; Kuzmin A.; Kwon Y.-J.; Lee I.S.; Li L.; Li Y.; Libby J.; Liu Y.; Liventsev D.; Lukin P.; Macnaughton J.; Masuda M.; Matvienko D.; Miyabayashi K.; Miyata H.; Mizuk R.; Mohanty G.B.; Mohanty S.; Moll A.; Moon H.K.; Mussa R.; Nakano E.; Nakao M.; Nanut T.; Natkaniec Z.; Nayak M.; Nisar N.K.; Nishida S.; Ogawa S.; Okuno S.; Oswald C.; Pakhlov P.; Pakhlova G.; Pal B.; Park H.; Pedlar T.K.; Pes�ntez L.; Pestotnik R.; Petri? M.; Piilonen L.E.; Pulvermacher C.; Rauch J.; Ribe�l E.; Ritter M.; Rostomyan A.; Sahoo H.; Sakai Y.; Sandilya S.; Santelj L.; Sanuki T.; Savinov V.; Schneider O.; Schnell G.; Schwartz A.J.; Seino Y.; Senyo K.; Seon O.; Sevior M.E.; Shebalin V.; Shibata T.-A.; Shiu J.-G.; Shwartz B.; Sibidanov A.; Simon F.; Sohn Y.-S.; Sokolov A.; Solovieva E.; Stari? M.; Sumiyoshi T.; Tamponi U.; Teramoto Y.; Trabelsi K.; Trusov V.; Uchida M.; Unno Y.; Uno S.; Urquijo P.; Usov Y.; Van Hulse C.; Vanhoefer P.; Varner G.; Varvell K.E.; Vorobyev V.; Vossen A.; Wang C.H.; Wang M.-Z.; Wang P.; Watanabe Y.; Won E.; Yamamoto H.; Yamashita Y.; Yook Y.; Zhang Z.P.; Zhilich V.; Zhulanov V.; Zupanc A.; Belle Collaboration
    We present a determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element |Vcb| using the decay B?D??? (?=e,?) based on 711 fb-1 of e+e-? (4S) data recorded by the Belle detector and containing 772�106 BB� pairs. One B meson in the event is fully reconstructed in a hadronic decay mode, while the other, on the signal side, is partially reconstructed from a charged lepton and either a D+ or D0 meson in a total of 23 hadronic decay modes. The isospin-averaged branching fraction of the decay B?D??? is found to be B(B0?D-?+??)=(2.31�0.03(stat)�0.11(syst))%. Analyzing the differential decay rate as a function of the hadronic recoil with the parametrization of Caprini, Lellouch, and Neubert and using the form-factor prediction G(1)=1.0541�0.0083 calculated by FNAL/MILC, we obtain ?EW|Vcb|=(40.12�1.34)�10-3, where ?EW is the electroweak correction factor. Alternatively, assuming the model-independent form-factor parametrization of Boyd, Grinstein, and Lebed and using lattice QCD data from the FNAL/MILC and HPQCD collaborations, we find ?EW|Vcb|=(41.10�1.14)�10-3. � 2016 American Physical Society.
  • No Thumbnail Available
    Item
    Measurement of the direct CP asymmetry in B � ?xs+d? decays with a lepton tag
    (2015) Pes�ntez L.; Urquijo P.; Dingfelder J.; Abdesselam A.; Adachi I.; Adamczyk K.; Aihara H.; Al Said S.; Arinstein K.; Asner D.M.; Aulchenko V.; Aushev T.; Ayad R.; Bahinipati S.; Bakich A.M.; Bansal V.; Barberio E.; Bhardwaj V.; Bhuyan B.; Bobrov A.; Bondar A.; Bonvicini G.; Bozek A.; Bra?ko M.; Browder T.E.; ?ervenkov D.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Chistov R.; Cho K.; Chobanova V.; Choi Y.; Cinabro D.; Dalseno J.; Dole�al Z.; Dr�sal Z.; Drutskoy A.; Dutta D.; Eidelman S.; Farhat H.; Fast J.E.; Ferber T.; Frost O.; Gaur V.; Gabyshev N.; Ganguly S.; Garmash A.; Getzkow D.; Gillard R.; Goh Y.M.; Golob B.; Haba J.; Hasenbusch J.; Hayashii H.; He X.H.; Heller A.; Horiguchi T.; Hou W.-S.; Huschle M.; Iijima T.; Inami K.; Ishikawa A.; Itoh R.; Iwasaki Y.; Jaegle I.; Joffe D.; Julius T.; Kang K.H.; Kato E.; Kawasaki T.; Kiesling C.; Kim D.Y.; Kim J.B.; Kim J.H.; Kim K.T.; Kim M.J.; Kim S.H.; Kim Y.J.; Ko B.R.; Kody� P.; Korpar S.; Kri�an P.; Krokovny P.; Kronenbitter B.; Kuhr T.; Kumita T.; Kuzmin A.; Kwon Y.-J.; Lange J.S.; Lee I.S.; Li Y.; Li Gioi L.; Libby J.; Liventsev D.; Lukin P.; Matvienko D.; Miyabayashi K.; Miyata H.; Mizuk R.; Mohanty G.B.; Moll A.; Moon H.K.; Nakano E.; Nakao M.; Nanut T.; Natkaniec Z.; Nayak M.; Ng C.; Nisar N.K.; Nishida S.; Ogawa S.; Okuno S.; Olsen S.L.; Oswald C.; Pakhlov P.; Pakhlova G.; Park C.W.; Park H.; Pedlar T.K.; Pestotnik R.; Petri? M.; Piilonen L.E.; Ribe�l E.; Ritter M.; Rostomyan A.; Rozanska M.; Sakai Y.; Sandilya S.; Santelj L.; Sanuki T.; Sato Y.; Savinov V.; Schneider O.; Schnell G.; Schwanda C.; Schwartz A.J.; Senyo K.; Seon O.; Sevior M.E.; Shebalin V.; Shen C.P.; Shibata T.-A.; Shiu J.-G.; Shwartz B.; Sibidanov A.; Simon F.; Sohn Y.-S.; Sokolov A.; Solovieva E.; Stari? M.; Steder M.; Sumiyoshi T.; Tamponi U.; Taniguchi N.; Tatishvili G.; Teramoto Y.; Trabelsi K.; Uchida M.; Uglov T.; Unno Y.; Uno S.; Usov Y.; Van Hulse C.; Vanhoefer P.; Varner G.; Vinokurova A.; Vorobyev V.; Wagner M.N.; Wang B.; Wang C.H.; Wang M.-Z.; Wang P.; Watanabe Y.; Williams K.M.; Won E.; Yamaoka J.; Yashchenko S.; Yook Y.; Zhang Z.P.; Zhilich V.; Zhulanov V.; Zupanc A.
    We report the measurement of the direct CP asymmetry in the radiative B�?Xs+d? decay using a data sample of (772�11)�106 BB� pairs collected at the (4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. The CP asymmetry is measured as a function of the photon energy threshold. For E???2.1GeV, where E?? is the photon energy in the center-of-mass frame, we obtain ACP(B�?Xs+d?)=(2.2�3.9�0.9)%, consistent with the standard model prediction. � 2015 American Physical Society.
  • No Thumbnail Available
    Item
    The monitoring system of the Belle II Vertex Detector
    (2016) Vitale L.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli Ti.; Baroncelli To.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Caria G.; Casarosa G.; Cautero G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; De Pietro G.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Giuressi D.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kambara N.; Kang K.H.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kumar R.; Kun W.; Kvasni?ka P.; La Licata C.; Lanceri L.; Lettenbicher J.; Libby J.; Lueck T.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Resmi P.K.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Watanuki S.; Watanabe M.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.; Zani L.
    The Belle II VerteX Detector (VXD) is a 6 layers silicon tracker device that will cope with an unprecedented luminosity of 8�1035 cm-2s-1 achievable by the new SuperKEKB e+e- collider, at the KEK laboratory (Tsukuba, Japan). All environment parameters such as temperature, humidity and radiation levels, must be constantly monitored and under certain conditions action must be promptly taken, such as interlocking the power supply or delivering an abort signal to the SuperKEKB collider. In this contribution we describe the Belle II VXD monitoring system. We also present the first results of the temperature and humidity system commissioned in a Beam Test at DESY in April 2016 and the preliminary results of the radiation monitoring achieved with a prototype system during the first SuperKEKB commissioning phase at KEK in February-June 2016. � 2016 Sissa Medialab Srl. All rights reserved.
  • «
  • 1 (current)
  • 2
  • »

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify