Belle II silicon vertex detector (SVD)

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The Belle II experiment at the SuperKEKB collider in Japan will operate at an unprecedented luminosity of 8� 1035 cm-2 s-1, about 40 times larger than its predecessor, Belle. Its vertex detector is composed of a two-layer DEPFET pixel detector (PXD) and a four layer double-sided silicon microstrip detector (SVD). To achieve a precise decay-vertex position determination and excellent low-momentum tracking under a harsh background condition and high trigger rate of 10 kHz, the SVD employs several innovative techniques. In order to minimize the parasitic capacitance in the signal path, 1748 APV25 ASIC chips, which read out signal from 224 k strip channels, are directly mounted on the modules with the novel Origami concept. The analog signal from APV25 are digitized by a flash ADC system, and sent to the central DAQ as well as to online tracking system based on SVD hits to provide region of interests to the PXD for reducing the latter�s data size to achieve the required bandwidth and data storage space. Furthermore, the state-of-the-art dual phase CO2 cooling solution has been chosen for a combined thermal management of the PXD and SVD system. In this proceedings, we present key design principles, module construction and integration status of the Belle II SVD. � Springer Nature Singapore Pte Ltd. 2018.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By