Browsing by Author "Mohanty S."
Now showing 1 - 20 of 41
- Results Per Page
- Sort Options
Item Belle II silicon vertex detector(2016) Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Enami K.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.W.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector. � 2016 Elsevier B.V.Item Belle II silicon vertex detector(2017) Dutta D.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli Ti.; Baroncelli To.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Caria G.; Casarosa G.; Ceccanti M.; Cervenkov D.; Chendvankar S.R.; Dash N.; De Pietro G.; Divekar S.T.; Dole�al Z.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kambara N.; Kang K.H.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kumar R.; Kun W.; Kvasnicka P.; La Licata C.; Lanceri L.; Lettenbicher J.; Libby J.; Lueck T.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Resmi P.K.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watanabe M.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; Wrkner B.; Yamamoto H.; Yin H.; Yoshinobu T.; Zani L.The Belle II experiment at the SuperKEKB asymmetric energy e+e- collider in KEK, Japan will operate at an instantaneous luminosity 40 times larger than that of its predecessor, Belle. It is built with an aim of collecting a huge amount of data (50 ab-1 by 2025) for precise CP violation measurements and new physics search. Thus, we need an accurate vertex determination and reconstruction of low momentum tracks which will be achieved with the help of vertex detector (VXD). The Belle II VXD consists of two layers of DEPFET pixels ('Pixel Detector') and four layers of double-sided silicon microstrip sensors ('Silicon Vertex Detector'), assembled over carbon fibre ribs. In this paper, we discuss about the Belle II Silicon Vertex Detector, especially its design and key features; we also present its module ('ladder') assembly and testing procedures. � 2017 IOP Publishing Ltd and Sissa Medialab srl.Item Belle II silicon vertex detector (SVD)(2018) Bahinipati S.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; De Pietro G.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Gobbo B.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kambara N.; Kang K.H.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Komarov I.; Kumar R.; Kun W.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Libby J.; Lee S.C.; Lueck T.; Maki M.; Mammini P.; Martini A.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Resmi P.K.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watanabe M.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.; Zani L.; (Belle-II SVD Collaboration)The Belle II experiment at the SuperKEKB collider in Japan will operate at an unprecedented luminosity of 8� 1035 cm-2 s-1, about 40 times larger than its predecessor, Belle. Its vertex detector is composed of a two-layer DEPFET pixel detector (PXD) and a four layer double-sided silicon microstrip detector (SVD). To achieve a precise decay-vertex position determination and excellent low-momentum tracking under a harsh background condition and high trigger rate of 10 kHz, the SVD employs several innovative techniques. In order to minimize the parasitic capacitance in the signal path, 1748 APV25 ASIC chips, which read out signal from 224 k strip channels, are directly mounted on the modules with the novel Origami concept. The analog signal from APV25 are digitized by a flash ADC system, and sent to the central DAQ as well as to online tracking system based on SVD hits to provide region of interests to the PXD for reducing the latter�s data size to achieve the required bandwidth and data storage space. Furthermore, the state-of-the-art dual phase CO2 cooling solution has been chosen for a combined thermal management of the PXD and SVD system. In this proceedings, we present key design principles, module construction and integration status of the Belle II SVD. � Springer Nature Singapore Pte Ltd. 2018.Item The Belle II silicon vertex detector assembly and mechanics(2017) Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.W.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Lueck T.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.; Belle-II SVD CollaborationThe Belle II experiment at the asymmetric SuperKEKB collider in Japan will operate at an instantaneous luminosity approximately 50 times greater than its predecessor (Belle). The central feature of the experiment is a vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is CP violation asymmetry in the decays of beauty and charm hadrons, which hinges on a precise charged-track vertex determination and low-momentum track measurement. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision 3D coordinate measurements of the final SVD modules. Finally, some results from the latest test-beam are reported. � 2016 Elsevier B.V.Item The Belle II SVD data readout system(2017) Thalmeier R.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Casarosa G.; Ceccanti M.; Cervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole?al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody? P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Lueck T.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaya I.; Rizzo G.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.The Belle II Experiment at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, will explore the asymmetry between matter and antimatter and search for new physics beyond the standard model. 172 double-sided silicon strip detectors are arranged cylindrically in four layers around the collision point to be part of a system which measures the tracks of the collision products of electrons and positrons. A total of 1748 radiation-hard APV25 chips read out 128 silicon strips each and send the analog signals by time-division multiplexing out of the radiation zone to 48 Flash Analog Digital Converter Modules (FADC). Each of them applies processing to the data; for example, it uses a digital finite impulse response filter to compensate line signal distortions, and it extracts the peak timing and amplitude from a set of several data points for each hit, using a neural network. We present an overview of the SVD data readout system, along with front-end electronics, cabling, power supplies and data processing. � 2016 Elsevier B.V.Item Belle II SVD ladder assembly procedure and electrical qualification(2016) Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaya I.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.The Belle II experiment at the SuperKEKB asymmetric collider in Japan will operate at a luminosity approximately 50 times larger than its predecessor (Belle). At its heart lies a six-layer vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is time-dependent CP violation asymmetry, which hinges on a precise charged-track vertex determination. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision three dimensional coordinate measurements of the jigs used in assembly as well as of the final SVD modules. � 2015 Elsevier B.V. All rights reserved.Item Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors(2016) Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8�1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors. � 2015 Elsevier B.V.Item A bonding study toward the quality assurance of Belle-II silicon vertex detector modules(2016) Kang K.H.; Jeon H.B.; Park H.; Uozumi S.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Joo C.W.; Kandra J.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaia I.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor �Origami� method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force. � 2016 Elsevier B.V.Item Compensation of voltage sag using DVR with PI controller(2016) Ganthia B.P.; Mohanty S.; Rana P.K.; Sahu P.K.A power quality problem is an occurrence which depicted as a nonstandard voltage, current or frequency that results in a failure or a dis-functioning of end use equipments causing a havoc to system performance. The aim therefore, in this work to maintain a proper voltage profile by mitigation of sag due to faults in power system occurred due to several reasons like energizing of heavy loads, transformers, induction motors, bad weather, insulation breakdown, closing & reclosing of circuit breakers. In this paper compensation of voltage sag is studied in various faults and minimize the total harmonic distortion in the transmission line. � 2016 IEEE.Item Construction and test of the first Belle II SVD ladder implementing the origami chip-on-sensor design(2016) Irmler C.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Fr�hwirth R.; Hara K.; Higuchi T.; Horiguchi T.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaia I.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.The Belle II Silicon Vertex Detector comprises four layers of double-sided silicon strip detectors (DSSDs), consisting of ladders with two to five sensors each. All sensors are individually read out by APV25 chips with the Origami chip-on-sensor concept for the central DSSDs of the ladders. The chips sit on flexible circuits that are glued on the top of the sensors. This concept allows a low material budget and an efficient cooling of the chips by a single pipe per ladder. We present the construction of the first SVD ladders and results from precision measurements and electrical tests. � 2016 IOP Publishing Ltd and Sissa Medialab srl.Item Electronics and firmware of the belle II silicon vertex detector readout system(2017) Thalmeier R.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipat S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batgnani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Caria G.; Casarosa G.; Ceccant M.; Cervenkov D.; Chendvankar S.R.; Dash N.; De Pietro G.; Divekar S.T.; Dole�al Z.; Dutta D.; Fort F.; Friedl M.; Gobbo B.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kambara N.; Kang K.H.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Komarov I.; Kumar R.; Kun W.; Kvasnicka P.; La Licata C.; Lanceri L.; Lee S.C.; Lettenbichler J.; Libby J.; Lueck T.; Maki M.; Mammini P.; Martni A.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profet A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Resmi P.K.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Taylor G.N.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watanabe M.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.; Zani L.; Belle-II SVD CollaboratonThe Silicon Vertex Detector of the Belle II Experiment at KEK in Tsukuba, Japan, consists of 172 double-sided strip sensors. They are read out by 1748 APV25 chips, and the analog data are sent out of the radiation zone to 48 modules which convert them to digital. FPGAs then compensate line signal distortions using digital finite impulse response filters and detect data frames from the incoming stream. Then they perform pedestal subtraction, common mode correction and zero suppression, as well as calculate the peak timing and amplitude of each event from a set of data samples using a neural network. � Copyright owned by the author(s) under the terms of the Creative Commons.Item EMC studies for the vertex detector of the Belle II experiment(2016) Thalmeier R.; Iglesias M.; Arteche F.; Echeverria I.; Friedl M.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; Cervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kiesling C.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasnicka P.; Lanceri L.; Lettenbicher J.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Moser H.G.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaia I.; Rizzo G.; Rozanska M.; Rummel S.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.The upgrade of the Belle II experiment plans to use a vertex detector based on two different technologies, DEPFET pixel (PXD) technology and double side silicon microstrip (SVD) technology. The vertex electronics are characterized by the topology of SVD bias that forces to design a sophisticated grounding because of the floating power scheme. The complex topology of the PXD power cable bundle may introduce some noise inside the vertex area. This paper presents a general overview of the EMC issues present in the vertex system, based on EMC tests on an SVD prototype and a study of noise propagation in the PXD cable bundle based on Multi-conductor transmission line theory. � 2016 IOP Publishing Ltd and Sissa Medialab srl.Item Evidence for Isospin Violation and Measurement of CP Asymmetries in B ?k? (892)?(2017) Horiguchi T.; Ishikawa A.; Yamamoto H.; Adachi I.; Aihara H.; Al Said S.; Asner D.M.; Aulchenko V.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Bakich A.M.; Bansal V.; Behera P.; Bhardwaj V.; Bhuyan B.; Biswal J.; Bobrov A.; Bonvicini G.; Bozek A.; Bra?ko M.; Browder T.E.; ?ervenkov D.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Cho K.; Choi Y.; Cinabro D.; Czank T.; Dash N.; Di Carlo S.; Dole�al Z.; Dr�sal Z.; Dutta D.; Eidelman S.; Epifanov D.; Farhat H.; Fast J.E.; Ferber T.; Fulsom B.G.; Gaur V.; Gabyshev N.; Garmash A.; Gelb M.; Gillard R.; Goldenzweig P.; Golob B.; Guan Y.; Guido E.; Haba J.; Hara T.; Hayasaka K.; Hayashii H.; Hedges M.T.; Higuchi T.; Hirose S.; Hou W.-S.; Iijima T.; Inami K.; Inguglia G.; Itoh R.; Iwasaki Y.; Jacobs W.W.; Jaegle I.; Jeon H.B.; Jia S.; Jin Y.; Joffe D.; Joo K.K.; Julius T.; Kang K.H.; Kawasaki T.; Kim D.Y.; Kim J.B.; Kim K.T.; Kim M.J.; Kim S.H.; Kim Y.J.; Kinoshita K.; Kody� P.; Korpar S.; Kotchetkov D.; Kri�an P.; Krokovny P.; Kuhr T.; Kulasiri R.; Kumar R.; Kumita T.; Kuzmin A.; Kwon Y.-J.; Lange J.S.; Li C.H.; Li L.; Li Gioi L.; Libby J.; Liventsev D.; Lubej M.; Luo T.; Masuda M.; Matsuda T.; Matvienko D.; Merola M.; Miyabayashi K.; Miyata H.; Mizuk R.; Mohanty G.B.; Mohanty S.; Moon H.K.; Mori T.; Mussa R.; Nakano E.; Nakao M.; Nanut T.; Nath K.J.; Natkaniec Z.; Nayak M.; Nisar N.K.; Nishida S.; Ogawa S.; Okuno S.; Ono H.; Pakhlov P.; Pakhlova G.; Pal B.; Pardi S.; Park C.-S.; Park H.; Paul S.; Pedlar T.K.; Pestotnik R.; Piilonen L.E.; Prasanth K.; Pulvermacher C.; Rauch J.; Rostomyan A.; Sakai Y.; Sandilya S.; Santelj L.; Savinov V.; Schneider O.; Schnell G.; Schwanda C.; Schwartz A.J.; Seino Y.; Senyo K.; Seong I.S.; Sevior M.E.; Shebalin V.; Shen C.P.; Shibata T.-A.; Shiu J.-G.; Simon F.; Sokolov A.; Solovieva E.; Stari? M.; Strube J.F.; Sumisawa K.; Sumiyoshi T.; Takizawa M.; Tamponi U.; Tanida K.; Tenchini F.; Trabelsi K.; Uchida M.; Uglov T.; Unno Y.; Uno S.; Urquijo P.; Ushiroda Y.; Usov Y.; Van Hulse C.; Varner G.; Vinokurova A.; Vorobyev V.; Vossen A.; Wang C.H.; Wang M.-Z.; Wang P.; Watanabe Y.; Watanuki S.; Weber T.; Widmann E.; Won E.; Yamashita Y.; Ye H.; Zhang Z.P.; Zhilich V.; Zhukova V.; Zhulanov V.; Zupanc A.; Belle CollaborationWe report the first evidence for isospin violation in B?K?? and the first measurement of the difference of CP asymmetries between B+?K?+? and B0?K?0?. This analysis is based on the data sample containing 772�106BB pairs that was collected with the Belle detector at the KEKB energy-asymmetric e+e- collider. We find evidence for the isospin violation with a significance of 3.1?, ?0+=[+6.2�1.5(stat)�0.6(syst)�1.2(f+-/f00)]%, where the third uncertainty is due to the uncertainty on the fraction of B+B- to B0B0 production in (4S) decays. The measured value is consistent with predictions of the standard model. The result for the difference of CP asymmetries is ?ACP=[+2.4�2.8(stat)�0.5(syst)]%, consistent with zero. The measured branching fractions and CP asymmetries for charged and neutral B meson decays are the most precise to date. We also calculate the ratio of branching fractions of B0?K?0? to Bs0???. � 2017 American Physical Society.Item First measurement of T -odd moments in D0 ? KS0 ?+?-?0 decays(2017) Prasanth K.; Libby J.; Adachi I.; Aihara H.; Al Said S.; Asner D.M.; Aulchenko V.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Bahinipati S.; Bakich A.M.; Bansal V.; Barberio E.; Berger M.; Bhardwaj V.; Bhuyan B.; Biswal J.; Bobrov A.; Bondar A.; Bonvicini G.; Bozek A.; Bra?ko M.; Browder T.E.; ?ervenkov D.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Chistov R.; Cho K.; Choi S.-K.; Choi Y.; Cinabro D.; Dash N.; Di Carlo S.; Dole�al Z.; Dr�sal Z.; Dutta D.; Eidelman S.; Epifanov D.; Farhat H.; Fast J.E.; Ferber T.; Fulsom B.G.; Gaur V.; Gabyshev N.; Garmash A.; Gillard R.; Goldenzweig P.; Greenwald D.; Haba J.; Hara T.; Hayasaka K.; Hedges M.T.; Hou W.-S.; Inami K.; Ishikawa A.; Itoh R.; Iwasaki Y.; Jacobs W.W.; Jaegle I.; Jeon H.B.; Jin Y.; Joffe D.; Joo K.K.; Julius T.; Kaliyar A.B.; Kang K.H.; Karyan G.; Kawasaki T.; Kiesling C.; Kim D.Y.; Kim J.B.; Kim K.T.; Kim M.J.; Kim S.H.; Kim Y.J.; Kinoshita K.; Kody� P.; Korpar S.; Kotchetkov D.; Kri�an P.; Krokovny P.; Kuhr T.; Kulasiri R.; Kumar R.; Kumita T.; Kuzmin A.; Kwon Y.-J.; Lange J.S.; Lee I.S.; Li C.H.; Li L.; Li Gioi L.; Liventsev D.; Lubej M.; Luo T.; Masuda M.; Matsuda T.; Matvienko D.; Miyabayashi K.; Miyata H.; Mizuk R.; Mohanty G.B.; Mohanty S.; Moon H.K.; Mori T.; Mussa R.; Nakamura K.R.; Nakao M.; Nanut T.; Nath K.J.; Natkaniec Z.; Nayak M.; Niiyama M.; Nisar N.K.; Nishida S.; Ogawa S.; Okuno S.; Ono H.; Pakhlov P.; Pakhlova G.; Pal B.; Park C.-S.; Park H.; Paul S.; Pes�ntez L.; Pestotnik R.; Piilonen L.E.; Pulvermacher C.; Ritter M.; Rostomyan A.; Sakai Y.; Salehi M.; Sandilya S.; Santelj L.; Sanuki T.; Sato Y.; Schneider O.; Schnell G.; Schwanda C.; Schwartz A.J.; Seino Y.; Senyo K.; Sevior M.E.; Shebalin V.; Shen C.P.; Shibata T.-A.; Shiu J.-G.; Shwartz B.; Simon F.; Sinha R.; Sokolov A.; Solovieva E.; Stari? M.; Strube J.F.; Sumisawa K.; Sumiyoshi T.; Takizawa M.; Tamponi U.; Tanida K.; Tenchini F.; Trabelsi K.; Uchida M.; Uehara S.; Uglov T.; Unno Y.; Uno S.; Urquijo P.; Van Hulse C.; Varner G.; Vinokurova A.; Vorobyev V.; Vossen A.; Waheed E.; Wang C.H.; Wang M.-Z.; Wang P.; Watanabe M.; Watanabe Y.; Widmann E.; Williams K.M.; Won E.; Yamamoto H.; Yamashita Y.; Ye H.; Yelton J.; Yook Y.; Yuan C.Z.; Yusa Y.; Zhang Z.P.; Zhilich V.; Zhukova V.; Zhulanov V.; Zupanc A.; (Belle Collaboration)We report the first measurement of the T-odd moments in the decay D0?KS0?+?-?0 from a data sample corresponding to an integrated luminosity of 966 fb-1 collected by the Belle experiment at the KEKB asymmetric-energy e+e- collider. From these moments we determine the CP-violation-sensitive asymmetry aCPT-odd=[-0.28�1.38(stat.)-0.76+0.23(syst.)]�10-3, which is consistent with no CP violation. In addition, we perform aCPT-odd measurements in different regions of the D0?KS0?+?-?0 phase space; these are also consistent with no CP violation. � 2017 American Physical Society.Item First observation of ?? ?p p K+K- and search for exotic baryons in pK systems(2016) Shen C.P.; Yuan C.Z.; Adachi I.; Aihara H.; Asner D.M.; Aulchenko V.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Bakich A.M.; Barberio E.; Behera P.; Bhardwaj V.; Bhuyan B.; Biswal J.; Bobrov A.; Bonvicini G.; Bozek A.; Bra?ko M.; Browder T.E.; ?ervenkov D.; Chang P.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Chistov R.; Cho K.; Chobanova V.; Choi S.-K.; Choi Y.; Cinabro D.; Dalseno J.; Danilov M.; Dash N.; Dole�al Z.; Dr�sal Z.; Dutta D.; Eidelman S.; Fang W.X.; Fast J.E.; Ferber T.; Fulsom B.G.; Gaur V.; Gabyshev N.; Garmash A.; Gillard R.; Glattauer R.; Goldenzweig P.; Grzymkowska O.; Haba J.; Hayasaka K.; Hayashii H.; Hou W.-S.; Iijima T.; Inami K.; Inguglia G.; Ishikawa A.; Itoh R.; Iwasaki Y.; Jaegle I.; Jeon H.B.; Joo K.K.; Julius T.; Kang K.H.; Kato E.; Kiesling C.; Kim D.Y.; Kim J.B.; Kim K.T.; Kim S.H.; Kim Y.J.; Kody� P.; Korpar S.; Kotchetkov D.; Kri�an P.; Krokovny P.; Kuzmin A.; Kwon Y.-J.; Lange J.S.; Li C.H.; Li H.; Li L.; Li Y.; Li Gioi L.; Libby J.; Liventsev D.; Lubej M.; Luo T.; Masuda M.; Matsuda T.; Matvienko D.; Miyabayashi K.; Miyata H.; Mizuk R.; Mohanty G.B.; Mohanty S.; Moll A.; Moon H.K.; Mussa R.; Nakano E.; Nakao M.; Nanut T.; Nath K.J.; Natkaniec Z.; Nishida S.; Ogawa S.; Olsen S.L.; Ostrowicz W.; Pakhlov P.; Pakhlova G.; Pal B.; Park C.-S.; Park H.; Pes�ntez L.; Pestotnik R.; Petri? M.; Piilonen L.E.; Pulvermacher C.; Rauch J.; Ritter M.; Sakai Y.; Sandilya S.; Santelj L.; Sanuki T.; Savinov V.; Schl�ter T.; Schneider O.; Schnell G.; Schwanda C.; Seino Y.; Semmler D.; Senyo K.; Seong I.S.; Sevior M.E.; Shibata T.-A.; Shiu J.-G.; Shwartz B.; Simon F.; Sokolov A.; Solovieva E.; Stani? S.; Stari? M.; Strube J.F.; Stypula J.; Sumihama M.; Sumiyoshi T.; Takizawa M.; Tamponi U.; Tanida K.; Tenchini F.; Trabelsi K.; Uchida M.; Uehara S.; Uglov T.; Unno Y.; Uno S.; Urquijo P.; Usov Y.; Van Hulse C.; Varner G.; Wang C.H.; Wang M.-Z.; Wang P.; Watanabe M.; Watanabe Y.; Williams K.M.; Won E.; Yamaoka J.; Yelton J.; Yook Y.; Yusa Y.; Zhang C.C.; Zhang Z.P.; Zhilich V.; Zhukova V.; Zhulanov V.; Zupanc A.; (Belle Collaboration)The process ???ppK+K- and its intermediate processes are measured for the first time using a 980 fb-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. The production of ppK+K- and a ?(1520)0 (?(1520)0) signal in the pK- (pK+) invariant mass spectrum are clearly observed. However, no evidence for an exotic baryon near 1540 MeV/c2, denoted as ?(1540)0 (?(1540)0) or ?(1540)++ (?(1540) - ), is seen in the pK- (pK+) or pK+ (pK-) invariant mass spectra. Cross sections for ???ppK+K-, ?(1520)0pK++c.c. and the products ?(????(1540)0pK++c.c.)B(?(1540)0?pK-) and ?(????(1540)++pK-+c.c.)B(?(1540)++?pK+) are measured. We also determine upper limits on the products of the ?c0 and ?c2 two-photon decay widths and their branching fractions to ppK+K- at the 90% credibility level. � 2016 American Physical Society.Item First observation of the decay B0 ?? (2S)?0(2016) Chobanova V.; Dalseno J.; Kiesling C.; Abdesselam A.; Adachi I.; Aihara H.; Asner D.M.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Bahinipati S.; Bakich A.M.; Barberio E.; Behera P.; Bhardwaj V.; Bhuyan B.; Biswal J.; Bobrov A.; Bozek A.; Bra?ko M.; Browder T.E.; ?ervenkov D.; Chekelian V.; Chen A.; Cheon B.G.; Chistov R.; Cho K.; Choi Y.; Cinabro D.; Dash N.; Dole�al Z.; Dr�sal Z.; Drutskoy A.; Eidelman S.; Farhat H.; Fast J.E.; Ferber T.; Fulsom B.G.; Gaur V.; Gabyshev N.; Garmash A.; Gillard R.; Goh Y.M.; Goldenzweig P.; Golob B.; Grzymkowska O.; Haba J.; Hara T.; Hayasaka K.; Hayashii H.; Hou W.-S.; Iijima T.; Inami K.; Ishikawa A.; Iwasaki Y.; Jaegle I.; Jeon H.B.; Joffe D.; Joo K.K.; Julius T.; Kato E.; Katrenko P.; Kawasaki T.; Kim D.Y.; Kim H.J.; Kim J.B.; Kim K.T.; Kim M.J.; Kim S.H.; Kim Y.J.; Kinoshita K.; Kody� P.; Korpar S.; Kri�an P.; Krokovny P.; Kuhr T.; Kumar R.; Kumita T.; Kuzmin A.; Kwon Y.-J.; Lee I.S.; Li H.; Li L.; Li Y.; Li Gioi L.; Libby J.; Liventsev D.; Masuda M.; Matvienko D.; Miyabayashi K.; Miyata H.; Mizuk R.; Mohanty G.B.; Mohanty S.; Moll A.; Moon H.K.; Mori T.; Mussa R.; Nakano E.; Nakao M.; Nanut T.; Natkaniec Z.; Nayak M.; Nedelkovska E.; Nisar N.K.; Nishida S.; Ogawa S.; Pakhlov P.; Pakhlova G.; Pal B.; Park C.W.; Park H.; Paul S.; Pedlar T.K.; Pestotnik R.; Petri? M.; Piilonen L.E.; Pulvermacher C.; Rauch J.; Ribe�l E.; Ritter M.; Ryu S.; Sahoo H.; Sakai Y.; Sandilya S.; Sanuki T.; Savinov V.; Schl�ter T.; Schneider O.; Schnell G.; Schwanda C.; Schwartz A.J.; Seino Y.; Senyo K.; Seon O.; Sevior M.E.; Shebalin V.; Shibata T.-A.; Shiu J.-G.; Shwartz B.; Simon F.; Singh J.B.; Sohn Y.-S.; Sokolov A.; Solovieva E.; Stari? M.; Stypula J.; Sumihama M.; Sumisawa K.; Sumiyoshi T.; Tamponi U.; Teramoto Y.; Trabelsi K.; Uchida M.; Uehara S.; Uglov T.; Unno Y.; Uno S.; Urquijo P.; Usov Y.; Van Hulse C.; Vanhoefer P.; Varner G.; Vinokurova A.; Vorobyev V.; Wagner M.N.; Wang C.H.; Wang M.-Z.; Wang P.; Wang X.L.; Watanabe M.; Watanabe Y.; Williams K.M.; Won E.; Yamaoka J.; Yashchenko S.; Ye H.; Yelton J.; Yuan C.Z.; Yusa Y.; Zhang Z.P.; Zhilich V.; Zhulanov V.; Zupanc A.; Belle CollaborationWe report a measurement of the B0??(2S)?0 branching fraction based on the full (4S) data set of 772�106 BB� pairs collected by the Belle detector at the KEKB asymmetric-energy e+e- collider. We obtain B(B0??(2S)?0)=(1.17�0.17(stat)�0.08(syst))�10-5. The result has a significance of 7.2 standard deviations and is the first observation of the decay B0??(2S)?0. � 2016 American Physical Society.Item Growth morphology and optical properties of ZnO nanostructures on different substrates(2013) Panda N.R.; Sahu D.; Mohanty S.; Acharya B.S.Growth of ZnO nano and microstructures were carried out by low temperature hydrothermal method on glass and silicon substrates without seed layer. Crystallographic orientation and morphology of the samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The transmittance measurements were done by Fourier transformed infrared (FTIR) spectroscopy and a Raman spectrometer was also deployed to understand the vibrational properties of ZnO nanocrystals. XRD and Raman studies showed the formation of hexagonal wurtzite phase of ZnO on both the substrates. Cactus and needle like nanostructures forming rosette superstructure were observed for ZnO on glass substrate. On Si(100), nanorods, tetrapods and multipodes were found with smaller crystallite size. More preferential growth and crystalline nature of ZnO on silicon substrate is discussed on the basis of lattice compatibility between ZnO and Si. The role of interface SiO2 layer, the effective growth mechanism and properties of these nanostructures are also discussed. Copyright � 2013 American Scientific Publishers All rights reserved.Item Hybrid Methods for Fast Detection and Characterization of Power Quality Disturbances(2015) Upadhyaya S.; Mohanty S.; Bhende C.N.In this paper, recently developed variants of wavelet transform, namely the maximum overlapping discrete wavelet transform and the second-generation wavelet transform, are used for detection of ten types of the power quality (PQ) disturbance signals. Further, the features of PQ signal disturbances are extracted using these wavelet transforms. Those extracted features are then used to classify various PQ disturbances. Random forest (RF) classifier is presented in this paper. The RF is constructed with multiple trees for classification of large number of classes simultaneously. In order to represent realistic situation, the proposed technique is tested with noisy data. � 2015, Brazilian Society for Automatics--SBA.Item Inclusive and exclusive measurements of B decays to ?c1 and ?c2 at Belle(2016) Bhardwaj V.; Miyabayashi K.; Panzenb�ck E.; Trabelsi K.; Frey A.; Abdesselam A.; Adachi I.; Aihara H.; Al Said S.; Arinstein K.; Asner D.M.; Atmacan H.; Aulchenko V.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Bahinipati S.; Bakich A.M.; Bala A.; Bansal V.; Barberio E.; Bhuyan B.; Biswal J.; Bobrov A.; Bondar A.; Bozek A.; Bra?ko M.; Browder T.E.; ?ervenkov D.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Chistov R.; Cho K.; Chobanova V.; Choi S.-K.; Choi Y.; Cinabro D.; Dalseno J.; Danilov M.; Dole�al Z.; Dutta D.; Eidelman S.; Farhat H.; Fast J.E.; Ferber T.; Frost O.; Fulsom B.G.; Gaur V.; Gabyshev N.; Ganguly S.; Garmash A.; Gillard R.; Glattauer R.; Goh Y.M.; Goldenzweig P.; Golob B.; Greenwald D.; Haba J.; Hamer P.; Hayasaka K.; Hayashii H.; He X.H.; Hou W.-S.; Iijima T.; Inami K.; Ishikawa A.; Itoh R.; Iwasaki Y.; Jaegle I.; Joffe D.; Joo K.K.; Julius T.; Kato E.; Katrenko P.; Kawasaki T.; Kiesling C.; Kim D.Y.; Kim J.B.; Kim K.T.; Kim M.J.; Kim S.H.; Kim Y.J.; Kinoshita K.; Ko B.R.; Kobayashi N.; Kody� P.; Korpar S.; Kri�an P.; Krokovny P.; Kuhr T.; Kumar R.; Kumita T.; Kuzmin A.; Kwon Y.-J.; Lee I.S.; Li C.; Li Y.; Li Gioi L.; Libby J.; Liventsev D.; Loos A.; Lukin P.; Masuda M.; Matvienko D.; Miyata H.; Mizuk R.; Mohanty G.B.; Mohanty S.; Moll A.; Moon H.K.; Mussa R.; Nakano E.; Nakao M.; Nanut T.; Natkaniec Z.; Nayak M.; Nisar N.K.; Nishida S.; Ogawa S.; Okuno S.; Pakhlova G.; Pal B.; Park C.W.; Park H.; Pedlar T.K.; Pestotnik R.; Petri? M.; Piilonen L.E.; Pulvermacher C.; Purohit M.V.; Rauch J.; Ribe�l E.; Ritter M.; Rostomyan A.; Sahoo H.; Sakai Y.; Sandilya S.; Santelj L.; Sanuki T.; Sato Y.; Savinov V.; Schneider O.; Schnell G.; Schwanda C.; Seino Y.; Semmler D.; Senyo K.; Seon O.; Sevior M.E.; Shebalin V.; Shen C.P.; Shibata T.-A.; Shiu J.-G.; Shwartz B.; Simon F.; Singh J.B.; Sohn Y.-S.; Sokolov A.; Solovieva E.; Stari? M.; Stypula J.; Sumihama M.; Sumiyoshi T.; Tamponi U.; Tanida K.; Teramoto Y.; Uchida M.; Uehara S.; Uglov T.; Unno Y.; Uno S.; Urquijo P.; Usov Y.; Van Hulse C.; Vanhoefer P.; Varner G.; Vinokurova A.; Vorobyev V.; Wang C.H.; Wang M.-Z.; Wang P.; Wang X.L.; Watanabe M.; Watanabe Y.; Wehle S.; Won E.; Yamaoka J.; Yashchenko S.; Ye H.; Yook Y.; Yuan C.Z.; Yusa Y.; Zhang Z.P.; Zhilich V.; Zhulanov V.; Zupanc A.; (Belle Collaboration)We report inclusive and exclusive measurements for ?c1 and ?c2 production in B decays. We measure B(B??c1X)=(3.03�0.05(stat)�0.24(syst))�10-3 and B(B??c2X)=(0.70�0.06(stat)�0.10(syst))�10-3. For the first time, ?c2 production in exclusive B decays in the modes B0??c2?-K+ and B+??c2?+?-K+ has been observed, along with first evidence for the B+??c2?+KS0 decay mode. For ?c1 production, we report the first observation in the B+??c1?+?-K+, B0??c1?+?-KS0 and B0??c1?0?-K+ decay modes. Using these decay modes, we observe a difference in the production mechanism of ?c2 in comparison to ?c1 in B decays. In addition, we report searches for X(3872) and ?c1(2P) in the B+?(?c1?+?-)K+ decay mode. The reported results use 772�106 BB-events collected at the (4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. � 2016 American Physical Society.Item Inclusive cross sections for pairs of identified light charged hadrons and for single protons in e+e- at s =10.58 GeV(2015) Seidl R.; Abdesselam A.; Adachi I.; Aihara H.; Al Said S.; Asner D.M.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Bakich A.M.; Barberio E.; Bhardwaj V.; Bhuyan B.; Biswal J.; Bozek A.; Bra?ko M.; Browder T.E.; ?ervenkov D.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Cho K.; Chobanova V.; Choi Y.; Cinabro D.; Dalseno J.; Dash N.; Dingfelder J.; Dole�al Z.; Dr�sal Z.; Dutta D.; Eidelman S.; Farhat H.; Fast J.E.; Ferber T.; Fulsom B.G.; Gaur V.; Gabyshev N.; Garmash A.; Gillard R.; Giordano F.; Goh Y.M.; Goldenzweig P.; Golob B.; Haba J.; Hara T.; Hayasaka K.; Hayashii H.; He X.H.; Hou W.-S.; Hsu C.-L.; Iijima T.; Inami K.; Ishikawa A.; Itoh R.; Iwasaki Y.; Jacobs W.W.; Jaegle I.; Joffe D.; Joo K.K.; Kang K.H.; Kato E.; Katrenko P.; Kawasaki T.; Kim D.Y.; Kim H.J.; Kim J.B.; Kim J.H.; Kim K.T.; Kim M.J.; Kim S.H.; Kim Y.J.; Kody� P.; Korpar S.; Kri�an P.; Krokovny P.; Kuzmin A.; Kwon Y.-J.; Lange J.S.; Lee D.H.; Li L.; Li Gioi L.; Libby J.; Liu Y.; Liventsev D.; Lukin P.; Masuda M.; Matvienko D.; Miyabayashi K.; Miyake H.; Miyata H.; Mizuk R.; Mohanty S.; Moll A.; Moon H.K.; Mori T.; Mussa R.; Nakano E.; Nakao M.; Nanut T.; Natkaniec Z.; Nayak M.; Niiyama M.; Nisar N.K.; Nishida S.; Ogawa S.; Okuno S.; Oswald C.; Pakhlov P.; Pakhlova G.; Pal B.; Park C.W.; Park H.; Pedlar T.K.; Pestotnik R.; Petri? M.; Piilonen L.E.; Ribe�l E.; Ritter M.; Rostomyan A.; Ryu S.; Sahoo H.; Sakai K.; Sakai Y.; Sandilya S.; Santelj L.; Sanuki T.; Savinov V.; Schneider O.; Schnell G.; Schwanda C.; Seino Y.; Senyo K.; Seon O.; Sevior M.E.; Shebalin V.; Shibata T.-A.; Shiu J.-G.; Simon F.; Sohn Y.-S.; Sokolov A.; Solovieva E.; Stari? M.; Sumihama M.; Sumisawa K.; Sumiyoshi T.; Tamponi U.; Teramoto Y.; Trusov V.; Uchida M.; Uglov T.; Unno Y.; Uno S.; Usov Y.; Van Hulse C.; Vanhoefer P.; Varner G.; Vorobyev V.; Vossen A.; Wagner M.N.; Wang C.H.; Wang M.-Z.; Wang P.; Watanabe M.; Watanabe Y.; Williams K.M.; Won E.; Yamaoka J.; Yashchenko S.; Yelton J.; Yusa Y.; Zhang Z.P.; Zhilich V.; Zhulanov V.; Belle CollaborationWe report the first double differential cross sections of two charged pions and kaons (e+e-?hhX) in electron-positron annihilation as a function of the fractional energies of the two hadrons for any charge and hadron combination. The dependence of these dihadron cross sections on the topology (same, opposite hemisphere or anywhere) is also studied with the help of the event shape variable thrust and its axis. The ratios of these dihadron cross sections for different charges and hadron combinations directly shed light on the contributing fragmentation functions. For example, we find that the ratio of same-sign pion pairs over opposite-sign pion pairs drops toward higher fractional energies where disfavored fragmentation is expected to be suppressed. These dihadron results are obtained from a 655 fb-1 data sample collected near the (4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. Extending the previously published single-pion and single-kaon cross sections, single-proton (e+e-?pX) cross sections are extracted from a 159 fb-1 data subsample. � 2015 American Physical Society.
- «
- 1 (current)
- 2
- 3
- »