Browsing by Author "Babu V."
Now showing 1 - 20 of 85
- Results Per Page
- Sort Options
Item Angular analysis of the e + e - ? D (*)� D *? process near the open charm threshold using initial-state radiation(2018) Zhukova V.; Pakhlova G.; Pakhlov P.; Adachi I.; Aihara H.; Al Said S.; Asner D.M.; Aulchenko V.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Behera P.; Bhuyan B.; Biswal J.; Bobrov A.; Bonvicini G.; Bozek A.; Bra?ko M.; Browder T.E.; ?ervenkov D.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Cho K.; Choi S.-K.; Choi Y.; Cinabro D.; Czank T.; Dash N.; Di Carlo S.; Dole�al Z.; Dr�sal Z.; Eidelman S.; Farhat H.; Fast J.E.; Ferber T.; Fulsom B.G.; Gaur V.; Garmash A.; Gillard R.; Goldenzweig P.; Grzymkowska O.; Guido E.; Haba J.; Hayasaka K.; Hayashii H.; Hedges M.T.; Hou W.-S.; Inami K.; Inguglia G.; Ishikawa A.; Itoh R.; Iwasaki M.; Iwasaki Y.; Jacobs W.W.; Jaegle I.; Jeon H.B.; Jia S.; Jin Y.; Julius T.; Kang K.H.; Karyan G.; Kiesling C.; Kim D.Y.; Kim K.T.; Kim S.H.; Korpar S.; Kotchetkov D.; Kri�an P.; Krokovny P.; Kulasiri R.; Kwon Y.-J.; Lange J.S.; Li L.; Li Gioi L.; Liventsev D.; Luo T.; Masuda M.; Matsuda T.; Merola M.; Miyabayashi K.; Miyata H.; Mizuk R.; Mohanty G.B.; Moon H.K.; Mori T.; Nakao M.; Nanut T.; Nath K.J.; Nayak M.; Niiyama M.; Nisar N.K.; Nishida S.; Ogawa S.; Olsen S.L.; Ono H.; Pal B.; Park C.-S.; Park C.W.; Paul S.; Pavelkin I.; Pedlar T.K.; Pestotnik R.; Piilonen L.E.; Popov V.; Pulvermacher C.; Rostomyan A.; Sakai Y.; Salehi M.; Sandilya S.; Sanuki T.; Schneider O.; Schnell G.; Schwanda C.; Seino Y.; Senyo K.; Sevior M.E.; Shebalin V.; Shibata T.-A.; Shiu J.-G.; Shwartz B.; Simon F.; Sokolov A.; Solovieva E.; Stari? M.; Sumiyoshi T.; Takizawa M.; Tanida K.; Tenchini F.; Trabelsi K.; Uchida M.; Uehara S.; Uglov T.; Unno Y.; Uno S.; Usov Y.; Van Hulse C.; Varner G.; Vinokurova A.; Vorobyev V.; Waheed E.; Wang C.H.; Wang M.-Z.; Wang P.; Wang X.L.; Watanabe Y.; Watanuki S.; Won E.; Yamashita Y.; Yusa Y.; Zakharov S.; Zhang Z.P.; Zhilich V.; Zhulanov V.; Zupanc A.; (Belle Collaboration)We report a new measurement of the exclusive e+e-?D(?)�D? cross sections as a function of the center-of-mass energy from the D(?)�D? threshold through s=6.0 GeV, using the initial-state radiation technique. The analysis is based on a data sample collected with the Belle detector with an integrated luminosity of 951 fb-1. The accuracy of the cross section measurement is increased by a factor of 2 over the first Belle study. We perform the first angular analysis of the e+e-?D?�D? process and decompose this exclusive cross section into three components corresponding to the D? helicities. � 2018 authors. Published by the American Physical Society.Item Belle II silicon vertex detector(2016) Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Enami K.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.W.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector. � 2016 Elsevier B.V.Item Belle II silicon vertex detector(2017) Dutta D.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli Ti.; Baroncelli To.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Caria G.; Casarosa G.; Ceccanti M.; Cervenkov D.; Chendvankar S.R.; Dash N.; De Pietro G.; Divekar S.T.; Dole�al Z.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kambara N.; Kang K.H.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kumar R.; Kun W.; Kvasnicka P.; La Licata C.; Lanceri L.; Lettenbicher J.; Libby J.; Lueck T.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Resmi P.K.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watanabe M.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; Wrkner B.; Yamamoto H.; Yin H.; Yoshinobu T.; Zani L.The Belle II experiment at the SuperKEKB asymmetric energy e+e- collider in KEK, Japan will operate at an instantaneous luminosity 40 times larger than that of its predecessor, Belle. It is built with an aim of collecting a huge amount of data (50 ab-1 by 2025) for precise CP violation measurements and new physics search. Thus, we need an accurate vertex determination and reconstruction of low momentum tracks which will be achieved with the help of vertex detector (VXD). The Belle II VXD consists of two layers of DEPFET pixels ('Pixel Detector') and four layers of double-sided silicon microstrip sensors ('Silicon Vertex Detector'), assembled over carbon fibre ribs. In this paper, we discuss about the Belle II Silicon Vertex Detector, especially its design and key features; we also present its module ('ladder') assembly and testing procedures. � 2017 IOP Publishing Ltd and Sissa Medialab srl.Item Belle II silicon vertex detector (SVD)(2018) Bahinipati S.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; De Pietro G.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Gobbo B.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kambara N.; Kang K.H.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Komarov I.; Kumar R.; Kun W.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Libby J.; Lee S.C.; Lueck T.; Maki M.; Mammini P.; Martini A.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Resmi P.K.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watanabe M.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.; Zani L.; (Belle-II SVD Collaboration)The Belle II experiment at the SuperKEKB collider in Japan will operate at an unprecedented luminosity of 8� 1035 cm-2 s-1, about 40 times larger than its predecessor, Belle. Its vertex detector is composed of a two-layer DEPFET pixel detector (PXD) and a four layer double-sided silicon microstrip detector (SVD). To achieve a precise decay-vertex position determination and excellent low-momentum tracking under a harsh background condition and high trigger rate of 10 kHz, the SVD employs several innovative techniques. In order to minimize the parasitic capacitance in the signal path, 1748 APV25 ASIC chips, which read out signal from 224 k strip channels, are directly mounted on the modules with the novel Origami concept. The analog signal from APV25 are digitized by a flash ADC system, and sent to the central DAQ as well as to online tracking system based on SVD hits to provide region of interests to the PXD for reducing the latter�s data size to achieve the required bandwidth and data storage space. Furthermore, the state-of-the-art dual phase CO2 cooling solution has been chosen for a combined thermal management of the PXD and SVD system. In this proceedings, we present key design principles, module construction and integration status of the Belle II SVD. � Springer Nature Singapore Pte Ltd. 2018.Item The Belle II silicon vertex detector assembly and mechanics(2017) Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.W.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Lueck T.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.; Belle-II SVD CollaborationThe Belle II experiment at the asymmetric SuperKEKB collider in Japan will operate at an instantaneous luminosity approximately 50 times greater than its predecessor (Belle). The central feature of the experiment is a vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is CP violation asymmetry in the decays of beauty and charm hadrons, which hinges on a precise charged-track vertex determination and low-momentum track measurement. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision 3D coordinate measurements of the final SVD modules. Finally, some results from the latest test-beam are reported. � 2016 Elsevier B.V.Item The Belle II SVD data readout system(2017) Thalmeier R.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Casarosa G.; Ceccanti M.; Cervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole?al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody? P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Lueck T.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaya I.; Rizzo G.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.The Belle II Experiment at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan, will explore the asymmetry between matter and antimatter and search for new physics beyond the standard model. 172 double-sided silicon strip detectors are arranged cylindrically in four layers around the collision point to be part of a system which measures the tracks of the collision products of electrons and positrons. A total of 1748 radiation-hard APV25 chips read out 128 silicon strips each and send the analog signals by time-division multiplexing out of the radiation zone to 48 Flash Analog Digital Converter Modules (FADC). Each of them applies processing to the data; for example, it uses a digital finite impulse response filter to compensate line signal distortions, and it extracts the peak timing and amplitude from a set of several data points for each hit, using a neural network. We present an overview of the SVD data readout system, along with front-end electronics, cabling, power supplies and data processing. � 2016 Elsevier B.V.Item Belle II SVD ladder assembly procedure and electrical qualification(2016) Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaya I.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.The Belle II experiment at the SuperKEKB asymmetric collider in Japan will operate at a luminosity approximately 50 times larger than its predecessor (Belle). At its heart lies a six-layer vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is time-dependent CP violation asymmetry, which hinges on a precise charged-track vertex determination. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision three dimensional coordinate measurements of the jigs used in assembly as well as of the final SVD modules. � 2015 Elsevier B.V. All rights reserved.Item The Belle II vertex detector integration(2019) Kody� P.; Abudinen F.; Ackermann K.; Ahlburg P.; Aihara H.; Albalawi M.; Alonso O.; Andricek L.; Ayad R.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Bai Y.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bertacchi V.; Bettarini S.; Bhuyan B.; Bilka T.; Blanco R.; Bosi F.; Boronat M.; Bosisio L.; Bozek A.; Buchsteiner F.; Camien C.; Caldwell A.; Caria G.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chekelian V.; Czank T.; Dash N.; De Nuccio M.; Deschamps B.; Dieguez A.; Dingfelder J.; Dole�al Z.; Esperante D.; Fischer P.; Forti F.; Fras M.; Frey A.; Friedl M.; Fuster J.; Gabriel M.; Gadow K.; Gebauer U.; Germic L.; Gessler T.; Getzkow D.; Gioi L.; Gobbo B.; Gomis P.; Grimaldo J.A.M.; Hara K.; Heck M.; Hemperek T.; Hensel M.; Higuchi T.; Hoek M.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kaleta M.; Kandra J.; Kambara N.; Kang K.H.; Kapusta P.; Kiesling C.; Kisielewski B.; Kittlinger D.; Klose D.; Koffmane C.; Kohriki T.; Koike S.; Komarov I.; Konorov I.; Krivokuca S.; Kr�ger H.; Kuhr T.; K�hn W.; Kumar M.; Kumar R.; Kun W.; Kvasni?ka P.; La Licata C.; Lacasta C.; Lalwani K.; Lanceri L.; Lange J.S.; Lautenbach K.; Lee J.Y.; Lee S.C.; Leis U.; Leitl P.; Levit D.; Libby J.; Liemann G.; Liu Z.; Lueck T.; L�tticke F.; Macharski L.; Mammini P.; Mari�as C.; Martini A.; Mayekar S.N.; Mccarney S.; Mohanty G.B.; Morii T.; Moser H.G.; Moya D.; Mueller F.J.; M�ller F.; M�nchow D.; Nakamura K.R.; Natkaniec Z.; Niebuhr C.; Ninkovic J.; Onuki Y.; Ostrowicz W.; Packheiser U.; Paladino A.; Paoloni E.; Park H.; Paschen B.; Paul S.; Peric I.; Poblotzki F.; Prasanth K.; Profeti A.; Rabusov A.; Rashevskaya I.; Rao K.K.; Reiter S.P.; P.K. R.; Richter R.; Ritter M.; Ritzert M.; Rizzo G.; Rozanska M.; Rummel S.; Sahoo D.; Sanchez J.G.; Sasaki J.; Sato N.; Scavino B.; Schaller G.; Schnecke M.; Schopper F.; Schreeck H.; Schultschik S.; Schwanda C.; Schwenker B.; Sedlmeyer R.; Sfienti C.; Simon F.; Skambraks S.; Soloviev Y.; Spruck B.; Stever R.; Stolzenberg U.; Stypula J.; Suzuki J.; Tafelmayer E.; Takahashi M.; Tanaka S.; Tanigawa H.; Taylor G.N.; Thalmeier R.; Tsuboyama T.; Urquijo P.; Vila I.; Virto A.L.; Vitale L.; Vogt S.; Vos M.; Wang C.; Watanuki S.; Watanabe M.; Watson I.J.; Webb J.; Wermes N.; Wessel C.; Wiechczynski J.; Wieduwilt P.; Williams S.; Windel H.; Ye H.; Yin H.; Zani L.; Zhao J.; (Belle II DEPFET, PXD, and SVD Collaborations)The Belle II experiment comes with a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric e+e? collider with energies tuned to ?(4S) resonance s=10.588 GeV. The accelerator has successfully completed the first phase of commissioning in 2016 and the first electron�positron collisions in Belle II took place in April 2018. Belle II features a newly designed silicon vertex detector based on DEPFET pixel and double-sided strip layers. Currently, a subset of the vertex detector is installed (Phase 2 of the experiment). Installation of the full detector (Phase 3) will be completed by the end of 2018. This paper describes the Phase 2 arrangement of the Belle II silicon vertex detector, with focus on the interconnection of detectors and their integration with the software framework of Belle II. Alignment issues are discussed based on detector simulations and first acquired data. � 2018 Elsevier B.V.Item Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors(2016) Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8�1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors. � 2015 Elsevier B.V.Item A bonding study toward the quality assurance of Belle-II silicon vertex detector modules(2016) Kang K.H.; Jeon H.B.; Park H.; Uozumi S.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Joo C.W.; Kandra J.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaia I.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor �Origami� method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force. � 2016 Elsevier B.V.Item Construction and test of the first Belle II SVD ladder implementing the origami chip-on-sensor design(2016) Irmler C.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; ?ervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Friedl M.; Fr�hwirth R.; Hara K.; Higuchi T.; Horiguchi T.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasni?ka P.; Lanceri L.; Lettenbicher J.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaia I.; Rizzo G.; Rozanska M.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thalmeier R.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.The Belle II Silicon Vertex Detector comprises four layers of double-sided silicon strip detectors (DSSDs), consisting of ladders with two to five sensors each. All sensors are individually read out by APV25 chips with the Origami chip-on-sensor concept for the central DSSDs of the ladders. The chips sit on flexible circuits that are glued on the top of the sensors. This concept allows a low material budget and an efficient cooling of the chips by a single pipe per ladder. We present the construction of the first SVD ladders and results from precision measurements and electrical tests. � 2016 IOP Publishing Ltd and Sissa Medialab srl.Item Electronics and firmware of the belle II silicon vertex detector readout system(2017) Thalmeier R.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipat S.; Barberio E.; Baroncelli T.; Baroncelli T.; Basith A.K.; Batgnani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Bulla L.; Caria G.; Casarosa G.; Ceccant M.; Cervenkov D.; Chendvankar S.R.; Dash N.; De Pietro G.; Divekar S.T.; Dole�al Z.; Dutta D.; Fort F.; Friedl M.; Gobbo B.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kambara N.; Kang K.H.; Kawasaki T.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Komarov I.; Kumar R.; Kun W.; Kvasnicka P.; La Licata C.; Lanceri L.; Lee S.C.; Lettenbichler J.; Libby J.; Lueck T.; Maki M.; Mammini P.; Martni A.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Nakamura K.R.; Natkaniec Z.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profet A.; Rashevskaya I.; Rao K.K.; Rizzo G.; Resmi P.K.; Rozanska M.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Taylor G.N.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Watanuki S.; Watanabe M.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.; Zani L.; Belle-II SVD CollaboratonThe Silicon Vertex Detector of the Belle II Experiment at KEK in Tsukuba, Japan, consists of 172 double-sided strip sensors. They are read out by 1748 APV25 chips, and the analog data are sent out of the radiation zone to 48 modules which convert them to digital. FPGAs then compensate line signal distortions using digital finite impulse response filters and detect data frames from the incoming stream. Then they perform pedestal subtraction, common mode correction and zero suppression, as well as calculate the peak timing and amplitude of each event from a set of data samples using a neural network. � Copyright owned by the author(s) under the terms of the Creative Commons.Item EMC studies for the vertex detector of the Belle II experiment(2016) Thalmeier R.; Iglesias M.; Arteche F.; Echeverria I.; Friedl M.; Adamczyk K.; Aihara H.; Angelini C.; Aziz T.; Babu V.; Bacher S.; Bahinipati S.; Barberio E.; Baroncelli T.; Basith A.K.; Batignani G.; Bauer A.; Behera P.K.; Bergauer T.; Bettarini S.; Bhuyan B.; Bilka T.; Bosi F.; Bosisio L.; Bozek A.; Buchsteiner F.; Casarosa G.; Ceccanti M.; Cervenkov D.; Chendvankar S.R.; Dash N.; Divekar S.T.; Dole�al Z.; Dutta D.; Forti F.; Hara K.; Higuchi T.; Horiguchi T.; Irmler C.; Ishikawa A.; Jeon H.B.; Joo C.; Kandra J.; Kang K.H.; Kato E.; Kawasaki T.; Kiesling C.; Kody� P.; Kohriki T.; Koike S.; Kolwalkar M.M.; Kvasnicka P.; Lanceri L.; Lettenbicher J.; Maki M.; Mammini P.; Mayekar S.N.; Mohanty G.B.; Mohanty S.; Morii T.; Moser H.G.; Nakamura K.R.; Natkaniec Z.; Negishi K.; Nisar N.K.; Onuki Y.; Ostrowicz W.; Paladino A.; Paoloni E.; Park H.; Pilo F.; Profeti A.; Rao K.K.; Rashevskaia I.; Rizzo G.; Rozanska M.; Rummel S.; Sandilya S.; Sasaki J.; Sato N.; Schultschik S.; Schwanda C.; Seino Y.; Shimizu N.; Stypula J.; Suzuki J.; Tanaka S.; Tanida K.; Taylor G.N.; Thomas R.; Tsuboyama T.; Uozumi S.; Urquijo P.; Vitale L.; Volpi M.; Watanuki S.; Watson I.J.; Webb J.; Wiechczynski J.; Williams S.; W�rkner B.; Yamamoto H.; Yin H.; Yoshinobu T.The upgrade of the Belle II experiment plans to use a vertex detector based on two different technologies, DEPFET pixel (PXD) technology and double side silicon microstrip (SVD) technology. The vertex electronics are characterized by the topology of SVD bias that forces to design a sophisticated grounding because of the floating power scheme. The complex topology of the PXD power cable bundle may introduce some noise inside the vertex area. This paper presents a general overview of the EMC issues present in the vertex system, based on EMC tests on an SVD prototype and a study of noise propagation in the PXD cable bundle based on Multi-conductor transmission line theory. � 2016 IOP Publishing Ltd and Sissa Medialab srl.Item Evidence for Isospin Violation and Measurement of CP Asymmetries in B ?k? (892)?(2017) Horiguchi T.; Ishikawa A.; Yamamoto H.; Adachi I.; Aihara H.; Al Said S.; Asner D.M.; Aulchenko V.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Bakich A.M.; Bansal V.; Behera P.; Bhardwaj V.; Bhuyan B.; Biswal J.; Bobrov A.; Bonvicini G.; Bozek A.; Bra?ko M.; Browder T.E.; ?ervenkov D.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Cho K.; Choi Y.; Cinabro D.; Czank T.; Dash N.; Di Carlo S.; Dole�al Z.; Dr�sal Z.; Dutta D.; Eidelman S.; Epifanov D.; Farhat H.; Fast J.E.; Ferber T.; Fulsom B.G.; Gaur V.; Gabyshev N.; Garmash A.; Gelb M.; Gillard R.; Goldenzweig P.; Golob B.; Guan Y.; Guido E.; Haba J.; Hara T.; Hayasaka K.; Hayashii H.; Hedges M.T.; Higuchi T.; Hirose S.; Hou W.-S.; Iijima T.; Inami K.; Inguglia G.; Itoh R.; Iwasaki Y.; Jacobs W.W.; Jaegle I.; Jeon H.B.; Jia S.; Jin Y.; Joffe D.; Joo K.K.; Julius T.; Kang K.H.; Kawasaki T.; Kim D.Y.; Kim J.B.; Kim K.T.; Kim M.J.; Kim S.H.; Kim Y.J.; Kinoshita K.; Kody� P.; Korpar S.; Kotchetkov D.; Kri�an P.; Krokovny P.; Kuhr T.; Kulasiri R.; Kumar R.; Kumita T.; Kuzmin A.; Kwon Y.-J.; Lange J.S.; Li C.H.; Li L.; Li Gioi L.; Libby J.; Liventsev D.; Lubej M.; Luo T.; Masuda M.; Matsuda T.; Matvienko D.; Merola M.; Miyabayashi K.; Miyata H.; Mizuk R.; Mohanty G.B.; Mohanty S.; Moon H.K.; Mori T.; Mussa R.; Nakano E.; Nakao M.; Nanut T.; Nath K.J.; Natkaniec Z.; Nayak M.; Nisar N.K.; Nishida S.; Ogawa S.; Okuno S.; Ono H.; Pakhlov P.; Pakhlova G.; Pal B.; Pardi S.; Park C.-S.; Park H.; Paul S.; Pedlar T.K.; Pestotnik R.; Piilonen L.E.; Prasanth K.; Pulvermacher C.; Rauch J.; Rostomyan A.; Sakai Y.; Sandilya S.; Santelj L.; Savinov V.; Schneider O.; Schnell G.; Schwanda C.; Schwartz A.J.; Seino Y.; Senyo K.; Seong I.S.; Sevior M.E.; Shebalin V.; Shen C.P.; Shibata T.-A.; Shiu J.-G.; Simon F.; Sokolov A.; Solovieva E.; Stari? M.; Strube J.F.; Sumisawa K.; Sumiyoshi T.; Takizawa M.; Tamponi U.; Tanida K.; Tenchini F.; Trabelsi K.; Uchida M.; Uglov T.; Unno Y.; Uno S.; Urquijo P.; Ushiroda Y.; Usov Y.; Van Hulse C.; Varner G.; Vinokurova A.; Vorobyev V.; Vossen A.; Wang C.H.; Wang M.-Z.; Wang P.; Watanabe Y.; Watanuki S.; Weber T.; Widmann E.; Won E.; Yamashita Y.; Ye H.; Zhang Z.P.; Zhilich V.; Zhukova V.; Zhulanov V.; Zupanc A.; Belle CollaborationWe report the first evidence for isospin violation in B?K?? and the first measurement of the difference of CP asymmetries between B+?K?+? and B0?K?0?. This analysis is based on the data sample containing 772�106BB pairs that was collected with the Belle detector at the KEKB energy-asymmetric e+e- collider. We find evidence for the isospin violation with a significance of 3.1?, ?0+=[+6.2�1.5(stat)�0.6(syst)�1.2(f+-/f00)]%, where the third uncertainty is due to the uncertainty on the fraction of B+B- to B0B0 production in (4S) decays. The measured value is consistent with predictions of the standard model. The result for the difference of CP asymmetries is ?ACP=[+2.4�2.8(stat)�0.5(syst)]%, consistent with zero. The measured branching fractions and CP asymmetries for charged and neutral B meson decays are the most precise to date. We also calculate the ratio of branching fractions of B0?K?0? to Bs0???. � 2017 American Physical Society.Item Evidence of a structure in K�0?c+ consistent with a charged ? c(2930) + , and updated measurement of B�0?K�0?c+?�c- at Belle: Belle Collaboration(2018) Li Y.B.; Shen C.P.; Adachi I.; Aihara H.; Al Said S.; Asner D.M.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Bahinipati S.; Ban Y.; Bansal V.; Behera P.; Bele�o C.; Bhardwaj V.; Bhuyan B.; Biswal J.; Bobrov A.; Bozek A.; Bra?ko M.; Browder T.E.; Cao L.; ?ervenkov D.; Chang P.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Cho K.; Choi S.-K.; Choi Y.; Choudhury S.; Cinabro D.; Cunliffe S.; Dash N.; Di Carlo S.; Dingfelder J.; Dole�al Z.; Dong T.V.; Dr�sal Z.; Eidelman S.; Epifanov D.; Fast J.E.; Fulsom B.G.; Garg R.; Gaur V.; Gabyshev N.; Garmash A.; Gelb M.; Giri A.; Goldenzweig P.; Golob B.; Haba J.; Hayasaka K.; Hirose S.; Hou W.-S.; Iijima T.; Inami K.; Inguglia G.; Ishikawa A.; Itoh R.; Iwasaki M.; Iwasaki Y.; Jacobs W.W.; Jaegle I.; Jeon H.B.; Jia S.; Jin Y.; Joo K.K.; Kaliyar A.B.; Kang K.H.; Kato Y.; Kawasaki T.; Kim D.Y.; Kim J.B.; Kim S.H.; Kinoshita K.; Kody� P.; Korpar S.; Kotchetkov D.; Kri�an P.; Kroeger R.; Krokovny P.; Kuhr T.; Kwon Y.-J.; Lange J.S.; Lee I.S.; Lee S.C.; Li L.K.; Li Gioi L.; Libby J.; Liventsev D.; Luo T.; Matvienko D.; Merola M.; Miyata H.; Mizuk R.; Moon H.K.; Mori T.; Mussa R.; Nakano E.; Nanut T.; Nath K.J.; Natkaniec Z.; Nayak M.; Nisar N.K.; Nishida S.; Nishimura K.; Ogawa K.; Okuno S.; Ono H.; Pakhlov P.; Pakhlova G.; Pal B.; Pardi S.; Park H.; Paul S.; Pedlar T.K.; Pestotnik R.; Piilonen L.E.; Popov V.; Prencipe E.; Rostomyan A.; Russo G.; Sakai Y.; Salehi M.; Sandilya S.; Santelj L.; Sanuki T.; Savinov V.; Schneider O.; Schnell G.; Schwanda C.; Seino Y.; Senyo K.; Seon O.; Sevior M.E.; Shibata T.-A.; Shiu J.-G.; Solovieva E.; Stari? M.; Strube J.F.; Sumihama M.; Sumiyoshi T.; Takizawa M.; Tamponi U.; Tanida K.; Tenchini F.; Uchida M.; Uglov T.; Unno Y.; Uno S.; Usov Y.; Van Hulse C.; Van Tonder R.; Varner G.; Varvell K.E.; Vorobyev V.; Waheed E.; Wang B.; Wang C.H.; Wang M.-Z.; Wang P.; Wang X.L.; Watanuki S.; Widmann E.; Won E.; Ye H.; Yelton J.; Yin J.H.; Yuan C.Z.; Yusa Y.; Zhang Z.P.; Zhilich V.; Zhukova V.; Zhulanov V.We report evidence for the charged charmed-strange baryon ? c(2930) + with a signal significance of 3.9? with systematic errors included. The charged ? c(2930) + is found in its decay to KS0?c+ in the substructure of B�0?KS0?c+?�c- decays. The measured mass and width are [2942.3 � 4.4 (stat.) � 1.5 (syst.)] MeV/c2 and [14.8 � 8.8 (stat.) � 2.5 (syst.)] MeV, respectively, and the product branching fraction is B(B�0??c(2930)+?�c-)B(?c(2930)+?K�0?c+)=[2.37�0.51(stat.)�0.31(syst.)]�10-4. We also measure B(B�0?K�0?c+?�c-)=[3.99�0.76(stat.)�0.51(syst.)]�10-4 with greater precision than previous experiments, and present the results of a search for the charmonium-like state Y(4660) and its spin partner, Y?, in the ?c+?�c- invariant mass spectrum. No clear signals of the Y(4660) or Y? are observed and the 90% credibility level (C.L.) upper limits on their production rates are determined. These measurements are obtained from a sample of (772 � 11) � 10 6BB� pairs collected at the ? (4 S) resonance by the Belle detector at the KEKB asymmetric energy electron-positron collider. � 2018, The Author(s).Item First Evidence for cos2?>0 and Resolution of the Cabibbo-Kobayashi-Maskawa Quark-Mixing Unitarity Triangle Ambiguity(2018) Adachi I.; Adye T.; Ahmed H.; Ahn J.K.; Aihara H.; Akar S.; Alam M.S.; Albert J.; Anulli F.; Arnaud N.; Asner D.M.; Aston D.; Atmacan H.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Bakich A.M.; Banerjee S.; Bansal V.; Barlow R.J.; Batignani G.; Beaulieu A.; Behera P.; Bellis M.; Ben-Haim E.; Bernard D.; Bernlochner F.U.; Bettarini S.; Bettoni D.; Bevan A.J.; Bhardwaj V.; Bhuyan B.; Bianchi F.; Biasini M.; Biswal J.; Blinov V.E.; Bomben M.; Bondar A.; Bonneaud G.R.; Bozek A.; Bozzi C.; Bra?ko M.; Browder T.E.; Brown D.N.; Brown D.N.; B�nger C.; Burchat P.R.; Buzykaev A.R.; Calabrese R.; Calcaterra A.; Calderini G.; Di Carlo S.; Carpinelli M.; Cartaro C.; Casarosa G.; Cenci R.; Chao D.S.; Chauveau J.; Cheaib R.; Chen A.; Chen C.; Cheng C.H.; Cheon B.G.; Chilikin K.; Cho K.; Choi Y.; Choudhury S.; Chrzaszcz M.; Cibinetto G.; Cinabro D.; Cochran J.; Coleman J.P.; Convery M.R.; Cowan G.; Cowan R.; Cremaldi L.; Cunliffe S.; Dash N.; Davier M.; Davis C.L.; De Mori F.; De Nardo G.; Denig A.G.; De Sangro R.; Dey B.; Di Lodovico F.; Dittrich S.; Dole�al Z.; Dorfan J.; Dr�sal Z.; Druzhinin V.P.; Dunwoodie W.; Ebert M.; Echenard B.; Eidelman S.; Eigen G.; Eisner A.M.; Emery S.; Epifanov D.; Ernst J.A.; Faccini R.; Fast J.E.; Feindt M.; Ferber T.; Ferrarotto F.; Ferroni F.; Field R.C.; Filippi A.; Finocchiaro G.; Fioravanti E.; Flood K.T.; Forti F.; Fritsch M.; Fulsom B.G.; Gabathuler E.; Gamba D.; Garg R.; Garmash A.; Gary J.W.; Garzia I.; Gaur V.; Gaz A.; Gelb M.; Gershon T.J.; Li Gioi L.; Giorgi M.A.; Giri A.; Godang R.; Goldenzweig P.; Golob B.; Golubev V.B.; Gorodeisky R.; Gradl W.; Graham M.T.; Grauges E.; Griessinger K.; Gritsan A.V.; Gr�nberg O.; Guan Y.; Guido E.; Guttman N.; Haba J.; Hafner A.; Hara T.; Harrison P.F.; Hast C.; Hayasaka K.; Hayashii H.; Hearty C.; Heck M.; Hedges M.T.; He� M.; Hirose S.; Hitlin D.G.; Honscheid K.; Hou W.-S.; Hsu C.-L.; Huard Z.; Van Hulse C.; Hutchcroft D.E.; Inami K.; Inguglia G.; Innes W.R.; Ishikawa A.; Itoh R.; Iwasaki M.; Iwasaki Y.; Izen J.M.; Jacobs W.W.; Jawahery A.; Jessop C.P.; Jia S.; Jin Y.; Joo K.K.; Julius T.; Kaliyar A.B.; Kang K.H.; Karyan G.; Kass R.; Kichimi H.; Kim D.Y.; Kim J.B.; Kim K.T.; Kim S.H.; Kim J.; Kim P.; King G.J.; Kinoshita K.; Koch H.; Kody� P.; Kolomensky Y.G.; Korpar S.; Kotchetkov D.; Kowalewski R.; Kravchenko E.A.; Kri�an P.; Kroeger R.; Krokovny P.; Kuhr T.; Kulasiri R.; Kumita T.; Kuzmin A.; Kwon Y.-J.; Lacker H.M.; Lafferty G.D.; Lanceri L.; Lange J.S.; Lange D.J.; Lankford A.J.; Latham T.E.; Leddig T.; Le Diberder F.; Lee I.S.; Lee S.C.; Lees J.P.; Leith D.W.G.S.; Li L.K.; Li Y.B.; Li Y.; Libby J.; Liventsev D.; Lockman W.S.; Long O.; Losecco J.M.; Lou X.C.; Lubej M.; Lueck T.; Luitz S.; Luo T.; Luppi E.; Lusiani A.; Lutz A.M.; Macfarlane D.B.; Macnaughton J.; Mallik U.; Manoni E.; Marchiori G.; Margoni M.; Martellotti S.; Martinez-Vidal F.; Masuda M.; Matsuda T.; Mattison T.S.; Matvienko D.; McKenna J.A.; Meadows B.T.; Merola M.; Miyabayashi K.; Miyashita T.S.; Miyata H.; Mizuk R.; Mohanty G.B.; Moon H.K.; Mori T.; Muller D.R.; M�ller T.; Mussa R.; Nakano E.; Nakao M.; Nanut T.; Nath K.J.; Nayak M.; Neal H.; Neri N.; Nisar N.K.; Nishida S.; Nugent I.M.; Oberhof B.; Ocariz J.; Ogawa S.; Ongmongkolkul P.; Ono H.; Onuchin A.P.; Onuki Y.; Oyanguren A.; Pakhlov P.; Pakhlova G.; Pal B.; Palano A.; Palombo F.; Panduro Vazquez W.; Paoloni E.; Pardi S.; Park H.; Passaggio S.; Patrignani C.; Patteri P.; Paul S.; Pavelkin I.; Payne D.J.; Pedlar T.K.; Peimer D.R.; Peruzzi I.M.; Pestotnik R.; Piccolo M.; Piilonen L.E.; Pilloni A.; Piredda G.; Poireau V.; Popov V.; Porter F.C.; Posocco M.; Prell S.; Prepost R.; Puccio E.M.T.; Purohit M.V.; Pushpawela B.G.; Rama M.; Randle-Conde A.; Ratcliff B.N.; Raven G.; Resmi P.K.; Ritchie J.L.; Ritter M.; Rizzo G.; Roberts D.A.; Robertson S.H.; R�hrken M.; Roney J.M.; Roodman A.; Rossi A.; Rotondo M.; Rozanska M.; Russo G.; Sacco R.; Al Said S.; Sakai Y.; Salehi M.; Sandilya S.; Santelj L.; Santoro V.; Sanuki T.; Savinov V.; Schneider O.; Schnell G.; Schroeder T.; Schubert K.R.; Schwanda C.; Schwartz A.J.; Schwitters R.F.; Sciacca C.; Seddon R.M.; Seino Y.; Sekula S.J.; Senyo K.; Seon O.; Serednyakov S.I.; Sevior M.E.; Shebalin V.; Shen C.P.; Shibata T.-A.; Shimizu N.; Shiu J.-G.; Simi G.; Simon F.; Simonetto F.; Skovpen Y.I.; Smith J.G.; Smith A.J.S.; So R.Y.; Sobie R.J.; Soffer A.; Sokoloff M.D.; Solodov E.P.; Solovieva E.; Spanier S.M.; Stari? M.; Stroili R.; Sullivan M.K.; Sumisawa K.; Sumiyoshi T.; Summers D.J.; Sun L.; Takizawa M.; Tamponi U.; Tanida K.; Taras P.; Tasneem N.; Tenchini F.; Tisserand V.; Todyshevx K.Y.; Touramanis C.; Uchida M.; Uglov T.; Unno Y.; Uno S.; Vahsen S.E.; Varner G.; Vasseur G.; Va'Vra J.; ?ervenkov D.; Verderi M.; Vitale L.; Vorobyev V.; Vo� C.; Wagner S.R.; Waheed E.; Waldi R.; Walsh J.J.; Wang B.; Wang C.H.; Wang M.-Z.; Wang P.; Watanabe Y.; Wilson F.F.; Wilson J.R.; Wisniewski W.J.; Won E.; Wormser G.; Wright D.M.; Wu S.L.; Ye H.; Yuan C.Z.; Yusa Y.; Zakharov S.; Zallo A.; Zani L.; Zhang Z.P.; Zhilich V.; Zhukova V.; Zhulanov V.; Zupanc A.We present first evidence that the cosine of the CP-violating weak phase 2? is positive, and hence exclude trigonometric multifold solutions of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle using a time-dependent Dalitz plot analysis of B0?D(?)h0 with D?KS0?+?- decays, where h0 {?0,?,?} denotes a light unflavored and neutral hadron. The measurement is performed combining the final data sets of the BABAR and Belle experiments collected at the (4S) resonance at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471�3)�106BB pairs recorded by the BABAR detector and (772�11)�106BB pairs recorded by the Belle detector. The results of the measurement are sin2?=0.80�0.14(stat)�0.06(syst)�0.03(model) and cos2?=0.91�0.22(stat)�0.09(syst)�0.07(model). The result for the direct measurement of the angle ? of the CKM Unitarity Triangle is ?=[22.5�4.4(stat)�1.2(syst)�0.6(model)]�. The measurement assumes no direct CP violation in B0?D(?)h0 decays. The quoted model uncertainties are due to the composition of the D0?KS0?+?- decay amplitude model, which is newly established by performing a Dalitz plot amplitude analysis using a high-statistics e+e-?cc data sample. CP violation is observed in B0?D(?)h0 decays at the level of 5.1 standard deviations. The significance for cos2?>0 is 3.7 standard deviations. The trigonometric multifold solution ?/2-?=(68.1�0.7)� is excluded at the level of 7.3 standard deviations. The measurement resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle. � 2018 authors. Published by the American Physical Society.Item First measurement of T -odd moments in D0 ? KS0 ?+?-?0 decays(2017) Prasanth K.; Libby J.; Adachi I.; Aihara H.; Al Said S.; Asner D.M.; Aulchenko V.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Bahinipati S.; Bakich A.M.; Bansal V.; Barberio E.; Berger M.; Bhardwaj V.; Bhuyan B.; Biswal J.; Bobrov A.; Bondar A.; Bonvicini G.; Bozek A.; Bra?ko M.; Browder T.E.; ?ervenkov D.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Chistov R.; Cho K.; Choi S.-K.; Choi Y.; Cinabro D.; Dash N.; Di Carlo S.; Dole�al Z.; Dr�sal Z.; Dutta D.; Eidelman S.; Epifanov D.; Farhat H.; Fast J.E.; Ferber T.; Fulsom B.G.; Gaur V.; Gabyshev N.; Garmash A.; Gillard R.; Goldenzweig P.; Greenwald D.; Haba J.; Hara T.; Hayasaka K.; Hedges M.T.; Hou W.-S.; Inami K.; Ishikawa A.; Itoh R.; Iwasaki Y.; Jacobs W.W.; Jaegle I.; Jeon H.B.; Jin Y.; Joffe D.; Joo K.K.; Julius T.; Kaliyar A.B.; Kang K.H.; Karyan G.; Kawasaki T.; Kiesling C.; Kim D.Y.; Kim J.B.; Kim K.T.; Kim M.J.; Kim S.H.; Kim Y.J.; Kinoshita K.; Kody� P.; Korpar S.; Kotchetkov D.; Kri�an P.; Krokovny P.; Kuhr T.; Kulasiri R.; Kumar R.; Kumita T.; Kuzmin A.; Kwon Y.-J.; Lange J.S.; Lee I.S.; Li C.H.; Li L.; Li Gioi L.; Liventsev D.; Lubej M.; Luo T.; Masuda M.; Matsuda T.; Matvienko D.; Miyabayashi K.; Miyata H.; Mizuk R.; Mohanty G.B.; Mohanty S.; Moon H.K.; Mori T.; Mussa R.; Nakamura K.R.; Nakao M.; Nanut T.; Nath K.J.; Natkaniec Z.; Nayak M.; Niiyama M.; Nisar N.K.; Nishida S.; Ogawa S.; Okuno S.; Ono H.; Pakhlov P.; Pakhlova G.; Pal B.; Park C.-S.; Park H.; Paul S.; Pes�ntez L.; Pestotnik R.; Piilonen L.E.; Pulvermacher C.; Ritter M.; Rostomyan A.; Sakai Y.; Salehi M.; Sandilya S.; Santelj L.; Sanuki T.; Sato Y.; Schneider O.; Schnell G.; Schwanda C.; Schwartz A.J.; Seino Y.; Senyo K.; Sevior M.E.; Shebalin V.; Shen C.P.; Shibata T.-A.; Shiu J.-G.; Shwartz B.; Simon F.; Sinha R.; Sokolov A.; Solovieva E.; Stari? M.; Strube J.F.; Sumisawa K.; Sumiyoshi T.; Takizawa M.; Tamponi U.; Tanida K.; Tenchini F.; Trabelsi K.; Uchida M.; Uehara S.; Uglov T.; Unno Y.; Uno S.; Urquijo P.; Van Hulse C.; Varner G.; Vinokurova A.; Vorobyev V.; Vossen A.; Waheed E.; Wang C.H.; Wang M.-Z.; Wang P.; Watanabe M.; Watanabe Y.; Widmann E.; Williams K.M.; Won E.; Yamamoto H.; Yamashita Y.; Ye H.; Yelton J.; Yook Y.; Yuan C.Z.; Yusa Y.; Zhang Z.P.; Zhilich V.; Zhukova V.; Zhulanov V.; Zupanc A.; (Belle Collaboration)We report the first measurement of the T-odd moments in the decay D0?KS0?+?-?0 from a data sample corresponding to an integrated luminosity of 966 fb-1 collected by the Belle experiment at the KEKB asymmetric-energy e+e- collider. From these moments we determine the CP-violation-sensitive asymmetry aCPT-odd=[-0.28�1.38(stat.)-0.76+0.23(syst.)]�10-3, which is consistent with no CP violation. In addition, we perform aCPT-odd measurements in different regions of the D0?KS0?+?-?0 phase space; these are also consistent with no CP violation. � 2017 American Physical Society.Item First measurement of the CKM angle ? 3 withS B � ? D(KS0 ? + ? ? ? 0) K � decays(2019) Resmi P.K.; Libby J.; Trabelsi K.; Adachi I.; Aihara H.; Al Said S.; Asner D.M.; Aulchenko V.; Aushev T.; Babu V.; Badhrees I.; Bakich A.M.; Bele�o C.; Bennett J.; Bhardwaj V.; Bhuyan B.; Bilka T.; Biswal J.; Bozek A.; Bra?ko M.; Campajola M.; ?ervenkov D.; Chen A.; Cheon B.G.; Cho H.E.; Cho K.; Choi Y.; Choudhury S.; Cinabro D.; Cunliffe S.; Dash N.; De Nardo G.; Di Capua F.; Di Carlo S.; Dole�al Z.; Dong T.V.; Eidelman S.; Epifanov D.; Fast J.E.; Ferber T.; Fulsom B.G.; Garg R.; Gaur V.; Gabyshev N.; Garmash A.; Giri A.; Goldenzweig P.; Golob B.; Guan Y.; Hayasaka K.; Hayashii H.; Hou W.-S.; Huang K.; Iijima T.; Inami K.; Inguglia G.; Ishikawa A.; Itoh R.; Iwasaki M.; Iwasaki Y.; Jacobs W.W.; Jeon H.B.; Jin Y.; Joffe D.; Kaliyar A.B.; Kang K.H.; Karyan G.; Kawasaki T.; Kiesling C.; Kim D.Y.; Kim K.T.; Kim S.H.; Kinoshita K.; Kody� P.; Kotchetkov D.; Kr?zan P.; Kroeger R.; Krokovny P.; Kuhr T.; Kumar R.; Kuzmin A.; Kwon Y.-J.; Lee S.C.; Li Y.B.; Lieret K.; Liventsev D.; Lu P.-C.; Luo T.; MacQueen C.; Masuda M.; Matsuda T.; Matvienko D.; Merola M.; Miyabayashi K.; Mizuk R.; Mohanty G.B.; Moon H.K.; Nakano T.; Nakao M.; Nath K.J.; Nayak M.; Niiyama M.; Nisar N.K.; Nishida S.; Nishimura K.; Ogawa S.; Ono H.; Onuki Y.; Pakhlov P.; Pakhlova G.; Pal B.; Pardi S.; Park H.; Pedlar T.K.; Pestotnik R.; Piilonen L.E.; Prencipe E.; Prim M.T.; Ritter M.; R�hrken M.; Russo G.; Sahoo D.; Sakai Y.; Sandilya S.; Santelj L.; Sanuki T.; Savinov V.; Schneider O.; Schnell G.; Schwanda C.; Schwartz A.J.; Seino Y.; Senyo K.; Sevior M.E.; Shebalin V.; Shen C.P.; Shiu J.-G.; Shwartz B.; Solovieva E.; Stari? M.; Stottler Z.S.; Strube J.F.; Sumiyoshi T.; Takizawa M.; Tamponi U.; Tanida K.; Tenchini F.; Uchida M.; Uglov T.; Uno S.; Usov Y.; Van Tonder R.; Varner G.; Vinokurova A.; Vorobyev V.; Vossen A.; Wang B.; Wang C.H.; Wang M.-Z.; Wang X.L.; Watanuki S.; Won E.; Yang S.B.; Ye H.; Zhang Z.P.; Zhilich V.; Zhukova V.; The BELLE collaborationWe present the first model-independent measurement of the CKM unitarity triangle angle ?3 using B�? D(KS0?+???0) K� decays, where D indicates either a D0 or D� 0 meson. Measurements of the strong-phase difference of the D ?KS0?+???0 amplitude obtained from CLEO-c data are used as input. This analysis is based on the full Belle data set of 772 � 106BB� events collected at the ?(4S) resonance. We obtain ?3 = (5.7?8.8+10.2�3.5�5.7)� and the suppressed amplitude ratio rB = 0.323�0.147�0.023�0.051. Here the first uncertainty is statistical, the second is the experimental systematic, and the third is due to the precision of the strong-phase parameters measured from CLEO-c data. The 95% confidence interval on ?3 is (?29.7, 109.5)�, which is consistent with the current world average. [Figure not available: see fulltext.] � 2019, The Author(s).Item First model-independent Dalitz analysis of B0 ? DK?0, D ? KS ?+?-decay(2016) Negishi K.; Ishikawa A.; Yamamoto H.; Abdesselam A.; Adachi I.; Aihara H.; Said A.Al.; Asner D.M.; Aulchenko V.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Bahinipati S.; Bakich A.M.; Barberio E.; Biswal J.; Bonvicini G.; Bozek A.; Bracko M.; Browder T.E.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Chistov R.; Cho K.; Chobanova V.; Choi S.-K.; Choi Y.; Cinabro D.; Dalseno J.; Danilov M.; Dolezal Z.; Drutskoy A.; Dutta D.; Eidelman S.; Farhat H.; Fast J.E.; Ferber T.; Fulsom B.G.; Gaur V.; Gabyshev N.; Garmash A.; Getzkow D.; Gillard R.; Glattauer R.; Goh Y.M.; Goldenzweig P.; Golob B.; Grzymkowska O.; Haba J.; Hara T.; Hayasaka K.; Hayashii H.; He X.H.; Horiguchi T.; Hou W.-S.; Iijima T.; Inami K.; Itoh R.; Iwasaki Y.; Jaegle I.; Joffe D.; Joo K.K.; Julius T.; Kang K.H.; Kawasaki T.; Kiesling C.; Kim D.Y.; Kim J.B.; Kim J.H.; Kim K.T.; Kim M.J.; Kim S.H.; Kim Y.J.; Kinoshita K.; Ko B.R.; Kodys P.; Korpar S.; Krizan P.; Krokovny P.; Kumita T.; Kuzmin A.; Kwon Y.-J.; Lange J.S.; Lee I.S.; Lewis P.; Li Y.; Li Gioi L.; Libby J.; Liventsev D.; Lukin P.; Masuda M.; Matvienko D.; Miyabayashi K.; Miyata H.; Mizuk R.; Mohanty G.B.; Moll A.; Moon H.K.; Mussa R.; Nakao M.; Nanut T.; Natkaniec Z.; Nayak M.; Nisar N.K.; Nishida S.; Ogawa S.; Okuno S.; Onuki Y.; Pakhlov P.; Pakhlova G.; Pal B.; Park C.W.; Park H.; Pedlar T.K.; Pesantez L.; Pestotnik R.; Petric M.; Piilonen L.E.; Pulvermacher C.; Ribezl E.; Ritter M.; Rostomyan A.; Sakai Y.; Sandilya S.; Santelj L.; Sanuki T.; Sato Y.; Savinov V.; Schneider O.; Schnell G.; Schwanda C.; Senyo K.; Sevior M.E.; Shebalin V.; Shen C.P.; Shibata T.-A.; Shiu J.-G.; Simon F.; Sohn Y.-S.; Solovieva E.; Stanic S.; Staric M.; Steder M.; Sumihama M.; Sumiyoshi T.; Tamponi U.; Teramoto Y.; Uchida M.; Unno Y.; Uno S.; Urquijo P.; Van Hulse C.; Vanhoefer P.; Varner G.; Vinokurova A.; Vossen A.; Wagner M.N.; Wang C.H.; Wang M.-Z.; Wang P.; Wang X.L.; Watanabe M.; Watanabe Y.; Wehle S.; Williams K.M.; Won E.; Yamaoka J.; Yamashita Y.; Yashchenko S.; Yelton J.; Yook Y.; Yuan C.Z.; Yusa Y.; Zhang Z.P.; Zhilich V.; Zhulanov V.; Zupanc A.We report a measurement of the amplitude ratio rS of B ? DK?and B ? D K?decays with a Dalitz analysis of D ? KS 0? +?-decays, for the first time using a modelindependent method. We set an upper limit rS < 0.87 at the 68% confidence level, using the full data sample of 711 fb-1 corresponding to 772 � 106 BB pairs collected at the (4S) resonance with the Belle detector at the KEKB e+e-collider. This result is obtained from observables x-= +0.4+1.0+0.0-0.6-0.1 � 0.0, y-=-0.6+-0 1.8 0+-0 0.1 0 � 0.1, x+ = +0.1+-0 0.7 4+-0 0.0 1 � 0.1, and y+ = +0.3+-0 0.5 8+-0 0.0 1 � 0.1, where x� = rS cos(dS � f3), y� = rS sin(dS � f3), and f3 (dS) is the weak (strong) phase difference between B ? DK?and B ? D K ?0. � 2016 The Author(s).Item First observation of ?? ?p p K+K- and search for exotic baryons in pK systems(2016) Shen C.P.; Yuan C.Z.; Adachi I.; Aihara H.; Asner D.M.; Aulchenko V.; Aushev T.; Ayad R.; Babu V.; Badhrees I.; Bakich A.M.; Barberio E.; Behera P.; Bhardwaj V.; Bhuyan B.; Biswal J.; Bobrov A.; Bonvicini G.; Bozek A.; Bra?ko M.; Browder T.E.; ?ervenkov D.; Chang P.; Chekelian V.; Chen A.; Cheon B.G.; Chilikin K.; Chistov R.; Cho K.; Chobanova V.; Choi S.-K.; Choi Y.; Cinabro D.; Dalseno J.; Danilov M.; Dash N.; Dole�al Z.; Dr�sal Z.; Dutta D.; Eidelman S.; Fang W.X.; Fast J.E.; Ferber T.; Fulsom B.G.; Gaur V.; Gabyshev N.; Garmash A.; Gillard R.; Glattauer R.; Goldenzweig P.; Grzymkowska O.; Haba J.; Hayasaka K.; Hayashii H.; Hou W.-S.; Iijima T.; Inami K.; Inguglia G.; Ishikawa A.; Itoh R.; Iwasaki Y.; Jaegle I.; Jeon H.B.; Joo K.K.; Julius T.; Kang K.H.; Kato E.; Kiesling C.; Kim D.Y.; Kim J.B.; Kim K.T.; Kim S.H.; Kim Y.J.; Kody� P.; Korpar S.; Kotchetkov D.; Kri�an P.; Krokovny P.; Kuzmin A.; Kwon Y.-J.; Lange J.S.; Li C.H.; Li H.; Li L.; Li Y.; Li Gioi L.; Libby J.; Liventsev D.; Lubej M.; Luo T.; Masuda M.; Matsuda T.; Matvienko D.; Miyabayashi K.; Miyata H.; Mizuk R.; Mohanty G.B.; Mohanty S.; Moll A.; Moon H.K.; Mussa R.; Nakano E.; Nakao M.; Nanut T.; Nath K.J.; Natkaniec Z.; Nishida S.; Ogawa S.; Olsen S.L.; Ostrowicz W.; Pakhlov P.; Pakhlova G.; Pal B.; Park C.-S.; Park H.; Pes�ntez L.; Pestotnik R.; Petri? M.; Piilonen L.E.; Pulvermacher C.; Rauch J.; Ritter M.; Sakai Y.; Sandilya S.; Santelj L.; Sanuki T.; Savinov V.; Schl�ter T.; Schneider O.; Schnell G.; Schwanda C.; Seino Y.; Semmler D.; Senyo K.; Seong I.S.; Sevior M.E.; Shibata T.-A.; Shiu J.-G.; Shwartz B.; Simon F.; Sokolov A.; Solovieva E.; Stani? S.; Stari? M.; Strube J.F.; Stypula J.; Sumihama M.; Sumiyoshi T.; Takizawa M.; Tamponi U.; Tanida K.; Tenchini F.; Trabelsi K.; Uchida M.; Uehara S.; Uglov T.; Unno Y.; Uno S.; Urquijo P.; Usov Y.; Van Hulse C.; Varner G.; Wang C.H.; Wang M.-Z.; Wang P.; Watanabe M.; Watanabe Y.; Williams K.M.; Won E.; Yamaoka J.; Yelton J.; Yook Y.; Yusa Y.; Zhang C.C.; Zhang Z.P.; Zhilich V.; Zhukova V.; Zhulanov V.; Zupanc A.; (Belle Collaboration)The process ???ppK+K- and its intermediate processes are measured for the first time using a 980 fb-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. The production of ppK+K- and a ?(1520)0 (?(1520)0) signal in the pK- (pK+) invariant mass spectrum are clearly observed. However, no evidence for an exotic baryon near 1540 MeV/c2, denoted as ?(1540)0 (?(1540)0) or ?(1540)++ (?(1540) - ), is seen in the pK- (pK+) or pK+ (pK-) invariant mass spectra. Cross sections for ???ppK+K-, ?(1520)0pK++c.c. and the products ?(????(1540)0pK++c.c.)B(?(1540)0?pK-) and ?(????(1540)++pK-+c.c.)B(?(1540)++?pK+) are measured. We also determine upper limits on the products of the ?c0 and ?c2 two-photon decay widths and their branching fractions to ppK+K- at the 90% credibility level. � 2016 American Physical Society.