On the Fermat-Type Difference Equation f3(z) + [c1f(z +c)+c0f(z)]3 = e?z+?
dc.contributor.author | Ahamed M.B. | en_US |
dc.date.accessioned | 2025-02-17T09:45:54Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Abstract: In this article, we deal with the solutions of the difference analogue of Fermat-type equation of the form f3(z) + [c1f(z + c)+ c0f(z)]3 = e?z+? and prove a result generalizing a result of Han and L� [J. Contemp. Math. Anal. 2019] and Ma et al. [J. Funct. Spaces 2020]. Furthermore, we explore the class of functions satisfying the Fermat-type difference equation. A considerable number of examples have been exhibited throughout the paper pertinent with the different issues. We characterize all possible nonconstant solutions of the Fermat-type difference equation f2(z) + f2(z + c) = e?z+?. � 2021, Allerton Press, Inc. | en_US |
dc.identifier.citation | 6 | en_US |
dc.identifier.uri | http://dx.doi.org/10.3103/S1068362321050022 | |
dc.identifier.uri | https://idr.iitbbs.ac.in/handle/2008/3250 | |
dc.language.iso | en | en_US |
dc.subject | Fermat-type complex difference equation; finite order; meromorphic solution; Nevanlinna theory; Weierstrass�s elliptic function | en_US |
dc.title | On the Fermat-Type Difference Equation f3(z) + [c1f(z +c)+c0f(z)]3 = e?z+? | en_US |
dc.type | Article | en_US |