A convolution property of univalent harmonic right half-plane mappings
dc.contributor.author | Ali M.F.; Allu V.; Ghosh N. | en_US |
dc.date.accessioned | 2025-02-17T09:11:35Z | |
dc.date.issued | 2020 | |
dc.description.abstract | We consider the convolution of right half-plane harmonic mappings in the unit disk D:={z?C:|z|<1} with respective dilatations ei?(z+ a) / (1 + az) and - z, where - 1 < a< 1 and ?? R. We prove that such convolutions are locally univalent and convex in the horizontal direction under certain condition. � 2020, Springer-Verlag GmbH Austria, part of Springer Nature. | en_US |
dc.identifier.citation | 1 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s00605-020-01442-3 | |
dc.identifier.uri | https://idr.iitbbs.ac.in/handle/2008/2681 | |
dc.subject | Analytic; Close-to-convex functions; Close-to-convex harmonic mappings; Convex; Convolution; Right half-plane mappings; Starlike; Univalent | en_US |
dc.title | A convolution property of univalent harmonic right half-plane mappings | en_US |
dc.type | Article | en_US |