A recurrent neural network approach to pulse radar detection
No Thumbnail Available
Date
2009
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Matched filtering of biphase coded radar signals create unwanted sidelobes which may mask some of the desired information. This paper presents a new approach for pulse compression using recurrent neural network (RNN). The 13-bit and 35-bit barker codes are used as input signal codes to RNN. The pulse radar detection system is simulated using RNN. The results of the simulation are compared with the results obtained from the simulation of pulse radar detection using Multilayer Perceptron (MLP) network. The number of input layer neurons is same as the length of the signal code and three hidden neurons are taken in the present systems. The Simulation results show that RNN yields better signal-to-sidelobe ratio (SSR) and doppler shift performance than neural network (NN) and some traditional algorithms like auto correlation function (ACF) algorithm. It is also observed that RNN based system converges faster as compared to the MLP based system. Hence the proposed RNN provides an efficient means for pulse radar detection.
Description
Keywords
ACF, Biphase code, Pulse compression, RNN, SSR