Block sparsity promoting algorithm for efficient construction of cluster expansion models for multicomponent alloys

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Multicomponent alloys are gaining significance as drivers of technological breakthroughs especially in structural and energy storage materials. The vast configuration space of these materials prohibit computational modeling using first-principles based methods alone. The cluster expansion (CE) method is the most widely used tool for modeling configurational disorder in alloys. CE relies on machine learning algorithms to train Hamiltonians and uses first-principles calculated data as training sets. In this paper we present a new compressive sensing-based algorithm for the efficient construction of CE Hamiltonians of multicomponent alloys. Our algorithm constructs highly sparse and physically reasonable models from a carefully selected small training set of alloy structures. Compared to conventional fitting algorithms, the algorithm achieves more than 50% reduction in the training set size. The resultant sparse models can sample the configuration space at least 3 � faster. We demonstrate this algorithm on 4 different alloy systems, namely Ag-Au, Ag-Au-Cu, Ag-Au-Cu-Pd and (Ge,Sn)(S,Se,Te).The sparse CE models for these alloys can rapidly reproduce known ground state orderings and order-disorder transitions. Our method can truly enable high-throughput multicomponent alloy thermodynamics by reducing the cost associated with model construction and configuration sampling. � 2023 IOP Publishing Ltd.

Description

Keywords

alloys; cluster expansion; disordered materials; Monte Carlo simulation

Citation

0

Endorsement

Review

Supplemented By

Referenced By