Solving multiobjective problems using cat swarm optimization

dc.contributor.authorPradhan P.M.en_US
dc.contributor.authorPanda G.en_US
dc.date.accessioned2025-02-17T04:44:54Z
dc.date.issued2012
dc.description.abstractThis paper proposes a new multiobjective evolutionary algorithm (MOEA) by extending the existing cat swarm optimization (CSO). It finds the nondominated solutions along the search process using the concept of Pareto dominance and uses an external archive for storing them. The performance of our proposed approach is demonstrated using standard test functions. A quantitative assessment of the proposed approach and the sensitivity test of different parameters is carried out using several performance metrics. The simulation results reveal that the proposed approach can be a better candidate for solving multiobjective problems (MOPs). � 2011 Elsevier Ltd. All rights reserved.en_US
dc.identifier.citation116en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2011.08.157
dc.identifier.urihttps://idr.iitbbs.ac.in/handle/2008/246
dc.language.isoenen_US
dc.subjectCat swarm optimizationen_US
dc.subjectEvolutionary algorithmen_US
dc.subjectMultiobjective cat swarm optimizationen_US
dc.subjectMultiobjective problemsen_US
dc.subjectPareto dominanceen_US
dc.subjectSwarm optimizationen_US
dc.titleSolving multiobjective problems using cat swarm optimizationen_US
dc.typeArticleen_US

Files