Particle swarm optimization based active noise control algorithm without secondary path identification

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In this paper, particle swarm optimization (PSO) algorithm, which is a nongradient but simple evolutionary computing-type algorithm, is proposed for developing an efficient active noise control (ANC) system. The ANC is conventionally used to control low-frequency acoustic noise by employing a gradient-optimization-based filtered-X least mean square (FXLMS) algorithm. Hence, there is a possibility that the performance of the ANC may be trapped by local minima problem. In addition, the conventional FXLMS algorithm needs prior identification of the secondary path. The proposed PSO-based ANC algorithm does not require the estimation of secondary path transfer function unlike FXLMS algorithm and, hence, is immune to time-varying nature of the secondary path. In this investigation, a small modification is incorporated in the conventional PSO algorithm to develop a conditional reinitialized PSO algorithm to suit to the time-varying plants of the ANC system. Systematic computer simulation studies are carried out to evaluate the performance of the new PSO-based ANC algorithm. � 2006 IEEE.

Description

Keywords

Active noise control (ANC), adaptive filtering, conditional reinitialized PSO (CRPSO), optimization, particle swarm optimization (PSO)

Citation

37

Endorsement

Review

Supplemented By

Referenced By