Herman rings of meromorphic maps with an omitted value

dc.contributor.authorNayak T.en_US
dc.date.accessioned2025-02-17T05:41:18Z
dc.date.issued2016
dc.description.abstractWe investigate the existence and distribution of Herman rings of transcendental meromorphic functions which have at least one omitted value. If all the poles of such a function are multiple, then it has no Herman ring. Herman rings of period one or two do not exist. Functions with a single pole or with at least two poles, one of which is an omitted value, have no Herman ring. Every doubly connected periodic Fatou component is a Herman ring. � 2015 American Mathematical Society.en_US
dc.identifier.citation4en_US
dc.identifier.urihttp://dx.doi.org/10.1090/proc12715
dc.identifier.urihttps://idr.iitbbs.ac.in/handle/2008/1121
dc.language.isoenen_US
dc.subjectHerman ringen_US
dc.subjectMeromorphic functionen_US
dc.subjectOmitted valueen_US
dc.titleHerman rings of meromorphic maps with an omitted valueen_US
dc.typeArticleen_US

Files