Impact of climate change on design of offshore wind turbine considering dynamic soil-structure interaction
No Thumbnail Available
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This study assesses the serviceability and fatigue limit states of the offshore wind turbine (OWT) founded in clay incorporating the impact of climate change. Two different offshore locations at east and west coasts in India are chosen. The ensemble of future time series of wind speed, wave height, and period is forecasted using statistical downscaling model (SDSM) at the regional level using the general circulation model (GCM) corresponding to the A1B, A2, and B1 emission scenarios. The downscaling model is calibrated by comparing simulations driven by the National Centers for Environmental Prediction (NCEP) high-resolution data and station data. Responses of OWT are obtained from dynamic analysis in a time domain using finite element (FE). The tower and monopile are modeled as Euler-Bernoulli beam, and soil resistance is modeled as American Petroleum Institute (API)-based p-y springs. The study shows future wind and wave loads are site specific, and it increases in the west coast and decreases in the east coast of India due to climate change. The simulation shows a substantial increase in future wind energy production at west coast compared to that of the east coast; however, safety margin considering serviceability and fatigue life decreases which requires modification in the design. � 2017 by ASME.
Description
Keywords
Climate change, Design, Monopile, Offshore wind turbine, Soil-structure interaction, Statistical downscaling