A note on kernel functions of Dirichlet spaces

dc.contributor.authorGehlawat S.en_US
dc.contributor.authorJain A.en_US
dc.contributor.authorSarkar A.D.en_US
dc.date.accessioned2025-02-17T11:40:07Z
dc.date.issued2025
dc.description.abstractFor a planar domain ?, we consider the Dirichlet spaces with respect to a base point ??? and the corresponding kernel functions. It is not known how these kernel functions behave as we vary the base point. In this note, we prove that these kernel functions vary smoothly. As an application of the smoothness result, we prove a Ramadanov-type theorem for these kernel functions on ?�?. This extends the previously known convergence results of these kernel functions. In fact, we have made these observations in a more general setting, that is, for weighted kernel functions and their higher-order counterparts. � 2024 Elsevier Inc.en_US
dc.identifier.citation0en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jmaa.2024.128897
dc.identifier.urihttps://idr.iitbbs.ac.in/handle/2008/5570
dc.language.isoenen_US
dc.subjectDirichlet spaceen_US
dc.subjectKernel functionen_US
dc.subjectRamadanov theoremen_US
dc.subjectReduced Bergman kernelen_US
dc.titleA note on kernel functions of Dirichlet spacesen_US
dc.typeArticleen_US

Files