Noncommutative space�time and Hausdorff dimension

dc.contributor.authorAnjana V.en_US
dc.contributor.authorHarikumar E.en_US
dc.contributor.authorKapoor A.K.en_US
dc.date.accessioned2025-02-17T06:17:58Z
dc.date.issued2017
dc.description.abstractWe study the Hausdorff dimension of the path of a quantum particle in noncommutative space�time. We show that the Hausdorff dimension depends on the deformation parameter (Formula presented.) and the resolution (Formula presented.) for both nonrelativistic and relativistic quantum particle. For the nonrelativistic case, it is seen that Hausdorff dimension is always less than 2 in the noncommutative space�time. For relativistic quantum particle, we find the Hausdorff dimension increases with the noncommutative parameter, in contrast to the commutative space�time. We show that noncommutative correction to Dirac equation brings in the spinorial nature of the relativistic wave function into play, unlike in the commutative space�time. By imposing self-similarity condition on the path of nonrelativistic and relativistic quantum particle in noncommutative space�time, we derive the corresponding generalized uncertainty relation. � 2017 World Scientific Publishing Companyen_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0217751X17501834
dc.identifier.urihttps://idr.iitbbs.ac.in/handle/2008/1566
dc.language.isoenen_US
dc.subjectgeneralized uncertainty relationen_US
dc.subjectHausdorff dimensionen_US
dc.subjectkappa-deformed space�timeen_US
dc.titleNoncommutative space�time and Hausdorff dimensionen_US
dc.typeArticle in Pressen_US

Files