Modeling isotherms, kinetics and understanding the mechanism of phosphate adsorption onto a solid waste: Ground burnt patties

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The objective of the present study was to investigate the adsorption behavior of grounded burnt patties (GBP), a solid waste generated from cooking fuel used in earthen stoves, as an adsorbent for phosphate removal from aqueous solution. The characterization of adsorbent was done by proton induced X- ray emission (PIXE), and proton induced ?-ray emission (PIGE) methods and the adsorption mechanisms by Fourier transferred infra-red spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. The effects of adsorbent dose, contact time, initial solution concentration, agitation, etc. on the uptake of phosphate by the adsorbent in batch mode were examined. The equilibrium data were fitted to different types of adsorption isotherms and kinetic models. Freundlich isotherm model and pseudo-second-order kinetic model illustrated best fit to the data. The favorability and spontaneity of the adsorption process are established by the values of experimentally calculated parameters such as separation factor (RL), 0.03, Freundlich exponent (n), 3.57 and Gibb's free energy change (?G�), -1.32 kJ/mol. The presence of coexisting anions showed no competing effects on phosphate removal efficiency. Breakthrough curves obtained from column study revealed that the lower flow rate and higher bed heights result in longer column saturation time. The results of this study suggested that GBP can be used as a low cost, highly efficient adsorbent for phosphate removal from aqueous solution. � 2014 Elsevier Ltd.

Description

Keywords

Adsorption isotherm, Adsorption kinetics, Aqueous solution, Grounded burnt patties, Phosphate removal

Citation

40

Endorsement

Review

Supplemented By

Referenced By