Thermosolutal Convection in a Rectangular Concentric Annulus: A Comprehensive Study

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This investigation presents numerical treatment of governing equations pertaining to thermosolutal flow within an annulus and an application of a model describing the important physical phenomenon as found in muffle furnace. The inner side of the annulus is exposed to high temperature and high solute concentration while the outer side of the annulus is maintained at low temperature and low solute concentration. Darcy-Brinkman-Forchheimer model is used to study the flow, heat and solute transfer in a non-Darcian saturated porous media. The solution is obtained upon application of control volume integration. Modified MAC method is used for the numerical solution of governing equations. Gradient dependent consistent hybrid upwind scheme of second order (GDCHUSSO) is used for discretization of the convective terms. The parameters such as Rayleigh-Darcy number, Darcy number, buoyancy ratio and width ratio, that govern the flow phenomenon have been identified and their effects are critically examined. The fluid flow pattern in the annular space and the associated heat and mass transfer are conceptualized from the obtained isoconcentration, isotherm and flowline contour maps. � 2013 Springer Science+Business Media Dordrecht.

Description

Keywords

Annulus space, Double diffusion, Porous media, Width ratio

Citation

9

Endorsement

Review

Supplemented By

Referenced By