Topological quantum computation on supersymmetric spin chains

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Quantum gates built out of braid group elements form the building blocks of topological quantum computation. They have been extensively studied in SU(2)k quantum group theories, a rich source of examples of non-Abelian anyons such as the Ising (k = 2), Fibonacci (k = 3) and Jones-Kauffman (k = 4) anyons. We show that the fusion spaces of these anyonic systems can be precisely mapped to the product state zero modes of certain Nicolai-like supersymmetric spin chains. As a result, we can realize the braid group in terms of the product state zero modes of these supersymmetric systems. These operators kill all the other states in the Hilbert space, thus preventing the occurrence of errors while processing information, making them suitable for quantum computing. � 2023, The Author(s).

Description

Keywords

Anyons; Extended Supersymmetry; Quantum Groups; Topological States of Matter

Citation

1

Endorsement

Review

Supplemented By

Referenced By