ON SOME SUBCLASSES of HARMONIC MAPPINGS
dc.contributor.author | Ghosh N. | en_US |
dc.contributor.author | Allu V. | en_US |
dc.date.accessioned | 2025-02-17T08:45:54Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Let denote the class of normalised harmonic mappings in the unit disk satisfying -M+|zg^{\prime \prime }(z)|$]]>, where and 0$]]>. Let denote the class of sense-preserving harmonic mappings in the unit disk satisfying, where 0$]]>. We discuss the coefficient bound problem, the growth theorem for functions in the class and a two-point distortion property for functions in the class. � 2019 Australian Mathematical Publishing Association Inc. | en_US |
dc.identifier.uri | http://dx.doi.org/10.1017/S0004972719000698 | |
dc.identifier.uri | https://idr.iitbbs.ac.in/handle/2008/2419 | |
dc.language.iso | en | en_US |
dc.subject | 2010 Mathematics subject classification | en_US |
dc.subject | primary 30C45 | en_US |
dc.subject | secondary 30C50 | en_US |
dc.title | ON SOME SUBCLASSES of HARMONIC MAPPINGS | en_US |
dc.type | Article | en_US |