Five-dimensional analysis of multi-contrast Jones matrix tomography of posterior eye

dc.contributor.authorBhaskar U.en_US
dc.contributor.authorHong Y.-J.en_US
dc.contributor.authorMiura M.en_US
dc.contributor.authorYasuno Y.en_US
dc.date.accessioned2025-02-17T05:11:35Z
dc.date.issued2014
dc.description.abstractPixel clustering algorithm tailored to multi-contrast Jones matrix based optical coherence tomography (MC-JMT) is demonstrated. This algorithm clusters multiple pixels of MC-JMT in a five-dimensional (5-D) feature space which comprises dimensions of lateral space, axial space, logarithmic scattering OCT intensity, squared power of Doppler shift and degree of polarization uniformity. This 5-D clustering provides clusters of pixels, so called as superpixels. The superpixels are utilized as local regions for pixels averaging. The averaging decreases the noise in the measurement as preserving structural details of the sample. A simple decision-tree algorithm is applied to classified superpixels into some tissue types. This classification process successfully segments tissues of a human posterior eye.en_US
dc.identifier.citation2en_US
dc.identifier.urihttp://dx.doi.org/1117/12.2036587
dc.identifier.urihttps://idr.iitbbs.ac.in/handle/2008/659
dc.language.isoenen_US
dc.subjectClusteringen_US
dc.subjectDoppler imagingen_US
dc.subjectImage processingen_US
dc.subjectMacular diseaseen_US
dc.subjectOphthalmologyen_US
dc.subjectOptical coherence tomographyen_US
dc.subjectPolarization imagingen_US
dc.subjectSuperpixelen_US
dc.titleFive-dimensional analysis of multi-contrast Jones matrix tomography of posterior eyeen_US
dc.typeConference Paperen_US

Files