Convergence and comparison theorems for single and double decompositions of rectangular matrices

dc.contributor.authorJena L.en_US
dc.contributor.authorMishra D.en_US
dc.contributor.authorPani S.en_US
dc.date.accessioned2025-02-17T05:06:47Z
dc.date.issued2014
dc.description.abstractDifferent convergence and comparison theorems for proper regular splittings and proper weak regular splittings are discussed. The notion of double splitting is also extended to rectangular matrices. Finally, convergence and comparison theorems using this notion are presented. � 2013 Springer-Verlag Italia.en_US
dc.identifier.citation17en_US
dc.identifier.urihttp://dx.doi.org/1007/s10092-013-0079-3
dc.identifier.urihttps://idr.iitbbs.ac.in/handle/2008/494
dc.language.isoenen_US
dc.subjectComparison theoremen_US
dc.subjectConvergence theoremen_US
dc.subjectDouble splittingen_US
dc.subjectMoore-Penrose inverseen_US
dc.subjectNon-negativityen_US
dc.subjectProper splittingsen_US
dc.titleConvergence and comparison theorems for single and double decompositions of rectangular matricesen_US
dc.typeArticleen_US

Files