Anfis modeling of boiling heat transfer over tube bundles

dc.contributor.authorSwain A.en_US
dc.contributor.authorDas M.K.en_US
dc.date.accessioned2025-02-17T08:46:30Z
dc.date.issued2019
dc.description.abstractThe article describes the application of artificial intelligence technique artificial neuro-fuzzy inference system (ANFIS) to predict the flow boiling heat transfer coefficient for distilled water on individual row in plain tube bundles. The variation of row-wise heat transfer coefficients is discussed with respect to the operating conditions such as mass flux, heat flux, and pitch to distance. A semi-empirical correlation is also formulated to predict the flow boiling Nusselt number taking the Peclet number, Froude number, and pitch-to-diameter ratio as inputs. The experimental data are predicted with �15% accuracy by the semi-empirical correlation, whereas the ANFIS model is capable to predict within a maximum error of �10%. � Springer Nature Singapore Pte Ltd. 2019en_US
dc.identifier.citation2en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-981-13-1595-4_34
dc.identifier.urihttps://idr.iitbbs.ac.in/handle/2008/2444
dc.language.isoenen_US
dc.subjectFirst keyworden_US
dc.subjectSecond keyworden_US
dc.subjectThird keyworden_US
dc.titleAnfis modeling of boiling heat transfer over tube bundlesen_US
dc.typeBook Chapteren_US

Files