Browsing by Author "Sahu S."
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
Item An Anisotropic Hyperelastic Inflated Toroidal Membrane in Lateral Contact with Two Flat Rigid Plates(2022) Sahu S.; Roychowdhury S.The present paper studies the contact problem of an inflated toroidal nonlinear anisotropic hyperelastic membrane laterally pressed between two flat rigid plates. The material is assumed to be homogeneous, and an anisotropic term is included in the incompressible Mooney�Rivlin hyperelastic model. Initially, two annular-shaped flat membranes, bonded at both equators, are considered in an undeformed state, which results in a toroidal geometry upon uniform internal pressurization. The contact problem of the inflated torus laterally pressed between two flat parallel plates is solved. Two different contact conditions, namely frictionless contact and no-slip contact, are considered within the contact region. The enclosed amount of gas within the inflated membrane is considered to be constant during the solution of the contact problem, which is solved in a quasi-static manner. In the case of no-slip contact, the stretch locking has been observed, and the frictionless contact causes the free flow of material points. The membrane�s stiffness increases with increasing anisotropic, material, and geometric parameters depicted in the force versus displacement curve under contact conditions. � 2022, The Chinese Society of Theoretical and Applied Mechanics.Item Band gap modulation of graphene by metal substrate: A first principles study(2018) Sahoo M.R.; Sahu S.; Kushwaha A.K.; Nayak S.K.Due to high in-plane charge carrier mobility with high electron velocity and long spin diffusion length, graphene guarantees as a completely unique material for devices with various applications. Unaffected 2pz orbitals of carbon atoms in graphene can be highly influenced by substrates and leads to tuning in electronic properties. We report here a density functional calculation of graphene monolayer based on metallic substrate like nickel surfaces. Band-gap of graphene near K points opens due to interactions between 2pz and d-orbitals of nickel atoms and the gap modulation can be done with the increasing number of layers of substrates. � 2018 Author(s).Item Charge transfer and hybridization effect at graphene-nickel interface: A tight binding model study(2019) Sahu S.; Sahoo M.R.; Kushwaha A.K.; Rout G.C.; Nayak S.K.We have investigated here, the electronic and magnetic properties of graphene�nickel system by tight-binding mean-field approach. Strong hybridization between the 2pz orbital of graphene and 3dz2 orbital of nickel occurs when monolayer graphene is placed over a single layer of ferromagnetically ordered Ni (111) metal due to the excellent lattice matching between the two layers. This hybridization greatly affects the electronic and magnetic properties of the bilayer system, resulting in a significantly reduced local magnetic moment of the nickel layer and an enhanced induced spin polarization on the graphene layer. The calculated Hamiltonian revealed critical information regarding the first-, second-and third-nearest-neighbour hopping integrals of ?? electrons of graphene besides the Coulomb correlation of electrons in nickel (111). The Hubbard type Coulomb interactions present in nickel lattices were treated within the mean-field approximation. Zubarev's technique was employed to calculate electronic Green's functions and subsequent investigation of the temperature dependent ferromagnetic magnetization of nickel (111)was carried out through self-consistent calculation. Further calculations regarding the induced magnetization in the graphene, total magnetization in bilayer layer system, electronic band dispersion, spin resolved density of states (DOS) and spin polarization efficiency have been carried out. The results were corroborated by experimental observations. � 2018 Elsevier LtdItem Interpretive structural modelling for critical success factors of R&D performance in Indian manufacturing firms(2013) Tripathy S.; Sahu S.; Ray P.K.PurposeIn order to enhance the performance of R&D in manufacturing organizations, the R&D managers need to identify the internal as well as the external factors that affect the R&D performance of manufacturing organizations in India. They need to understand the inter-dependencies of these factors. This paper seeks to identify the critical success factors for R&D in Indian manufacturing firms. Design/methodology/approachThere may be a number of factors that are critical for achieving acceptable R&D performance and these factors have been identified by a number of instruments or means, such as questionnaire surveys, brainstorming, and consolidation by Principal Component Analysis (PCA). A total of 14 factors have been identified by using principal component analysis and finally we have developed a structure of interrelationship among the identified critical success factors using an interpretive structural model. FindingsThe results show that R&D vision and direction and R&D oriented culture are the most important critical success factors (CSFs) and they have a great influence on the other CSFs. Though R&D vision and direction and R&D oriented culture are the short-term objectives, Indian manufacturing firms should be equipped with proper R&D management strategy to achieve the long-term objectives, such as achievement of revenue and profitability within a quick time frame. Practical implicationsAlthough R&D managers of Indian manufacturing firms are aware of various critical success factors, a systematic approach is required for identifying them, and as these factors may have complex interrelations between them for analyzing R&D performance in a manufacturing firm, it is essential that such an approach is in place. The hierarchy based ISM further defines those factors which are really critical and need more focus on the root causes of the success. In addition to that, the proposed ISM model acts as a good guideline in order to improve the performance of the manufacturing R&D organizations in India. Originality/valueThe paper provides an interpretive structural model to develop a map of the complex relationships and magnitude among identified critical success factors. � 2013, � Emerald Group Publishing Limited.Item Magnetic Susceptibility and Neutron Scattering of Graphene in Antiferromagnetic State: a Tight-Binding Approach(2018) Sahu S.; Panda S.K.; Rout G.C.We address here a tight-binding model study of the frequency-dependent antiferromagnetic spin susceptibility for the graphene systems. The Hamiltonian consists of electron hopping up to the third-nearest-neighbors, substrate and impurity effects in presence of electron-electron interactions at A and B sub-lattices. To calculate susceptibility, we evaluate the two-particle electron Green�s function by using Zubarev�s Green�s function technique. The frequency-dependent antiferromagnetic susceptibility of the system is computed numerically by taking 1000 X 1000 grid points of the electron momentum. The susceptibility displays a sharp peak at the neutron momentum transfer energy at low energies and another higher-energy peak associated with the substrate-induced gap. The evolution of these two peaks are investigated by varying neutron wave vector, Coulomb correlation energy, substrate-induced gap, electron hopping integrals and A- and B-site electron-doping concentrations. � 2017, Springer Science+Business Media, LLC.Item The Physics of the B Factories(2014) Bevan A.J.; Golob B.; Mannel T.; Prell S.; Yabsley B.D.; Aihara H.; Anulli F.; Arnaud N.; Aushev T.; Beneke M.; Beringer J.; Bianchi F.; Bigi I.I.; Bona M.; Brambilla N.; Brodzicka J.; Chang P.; Charles M.J.; Cheng C.H.; Cheng H.-Y.; Chistov R.; Colangelo P.; Coleman J.P.; Drutskoy A.; Druzhinin V.P.; Eidelman S.; Eigen G.; Eisner A.M.; Faccini R.; Flood K.T.; Gambino P.; Gaz A.; Gradl W.; Hayashii H.; Higuchi T.; Hulsbergen W.D.; Hurth T.; Iijima T.; Itoh R.; Jackson P.D.; Kass R.; Kolomensky Y.G.; Kou E.; Kri�an P.; Kronfeld A.; Kumano S.; Kwon Y.J.; Latham T.E.; Leith D.W.G.S.; L�th V.; Martinez-Vidal F.; Meadows B.T.; Mussa R.; Nakao M.; Nishida S.; Ocariz J.; Olsen S.L.; Pakhlov P.; Pakhlova G.; Palano A.; Pich A.; Playfer S.; Poluektov A.; Porter F.C.; Robertson S.H.; Roney J.M.; Roodman A.; Sakai Y.; Schwanda C.; Schwartz A.J.; Seidl R.; Sekula S.J.; Steinhauser M.; Sumisawa K.; Swanson E.S.; Tackmann F.; Trabelsi K.; Uehara S.; Uno S.; van de Water R.; Vasseur G.; Verkerke W.; Waldi R.; Wang M.Z.; Wilson F.F.; Zupan J.; Zupanc A.; Adachi I.; Albert J.; Banerjee S.; Bellis M.; Ben-Haim E.; Biassoni P.; Cahn R.N.; Cartaro C.; Chauveau J.; Chen C.; Chiang C.C.; Cowan R.; Dalseno J.; Davier M.; Davies C.; Dingfelder J.C.; Echenard B.; Epifanov D.; Fulsom B.G.; Gabareen A.M.; Gary J.W.; Godang R.; Graham M.T.; Hafner A.; Hamilton B.; Hartmann T.; Hayasaka K.; Hearty C.; Iwasaki Y.; Khodjamirian A.; Kusaka A.; Kuzmin A.; Lafferty G.D.; Lazzaro A.; Li J.; Lindemann D.; Long O.; Lusiani A.; Marchiori G.; Martinelli M.; Miyabayashi K.; Mizuk R.; Mohanty G.B.; Muller D.R.; Nakazawa H.; Ongmongkolkul P.; Pacetti S.; Palombo F.; Pedlar T.K.; Piilonen L.E.; Pilloni A.; Poireau V.; Prothmann K.; Pulliam T.; Rama M.; Ratcliff B.N.; Roudeau P.; Schrenk S.; Schroeder T.; Schubert K.R.; Shen C.P.; Shwartz B.; Soffer A.; Solodov E.P.; Somov A.; Stari? M.; Stracka S.; Telnov A.V.; Todyshev K.Y.; Tsuboyama T.; Uglov T.; Vinokurova A.; Walsh J.J.; Watanabe Y.; Won E.; Wormser G.; Wright D.H.; Ye S.; Zhang C.C.; Abachi S.; Abashian A.; Abe K.; Abe N.; Abe R.; Abe T.; Abrams G.S.; Adam I.; Adamczyk K.; Adametz A.; Adye T.; Agarwal A.; Ahmed H.; Ahmed M.; Ahmed S.; Ahn B.S.; Ahn H.S.; Aitchison I.J.R.; Akai K.; Akar S.; Akatsu M.; Akemoto M.; Akhmetshin R.; Akre R.; Alam M.S.; Albert J.N.; Aleksan R.; Alexander J.P.; Alimonti G.; Allen M.T.; Allison J.; Allmendinger T.; Alsmiller J.R.G.; Altenburg D.; Alwyn K.E.; An Q.; Anderson J.; Andreassen R.; Andreotti D.; Andreotti M.; Andress J.C.; Angelini C.; Anipko D.; Anjomshoaa A.; Anthony P.L.; Antillon E.A.; Antonioli E.; Aoki K.; Arguin J.F.; Arinstein K.; Arisaka K.; Asai K.; Asai M.; Asano Y.; Asgeirsson D.J.; Asner D.M.; Aso T.; Aspinwall M.L.; Aston D.; Atmacan H.; Aubert B.; Aulchenko V.; Ayad R.; Azemoon T.; Aziz T.; Azzolini V.; Azzopardi D.E.; Baak M.A.; Back J.J.; Bagnasco S.; Bahinipati S.; Bailey D.S.; Bailey S.; Bailly P.; van Bakel N.; Bakich A.M.; Bala A.; Balagura V.; Baldini-Ferroli R.; Ban Y.; Banas E.; Band H.R.; Banerjee S.; Baracchini E.; Barate R.; Barberio E.; Barbero M.; Bard D.J.; Barillari T.; Barlow N.R.; Barlow R.J.; Barrett M.; Bartel W.; Bartelt J.; Bartoldus R.; Batignani G.; Battaglia M.; Bauer J.M.; Bay A.; Beaulieu M.; Bechtle P.; Beck T.W.; Becker J.; Becla J.; Bedny I.; Behari S.; Behera P.K.; Behn E.; Behr L.; Beigbeder C.; Beiline D.; Bell R.; Bellini F.; Bellodi G.; Belous K.; Benayoun M.; Benelli G.; Benitez J.F.; Benkebil M.; Berger N.; Bernabeu J.; Bernard D.; Bernet R.; Bernlochner F.U.; Berryhill J.W.; Bertsche K.; Besson P.; Best D.S.; Bettarini S.; Bettoni D.; Bhardwaj V.; Bhimji W.; Bhuyan B.; Biagini M.E.; Biasini M.; van Bibber K.; Biesiada J.; Bingham I.; Bionta R.M.; Bischofberger M.; Bitenc U.; Bizjak I.; Blanc F.; Blaylock G.; Blinov V.E.; Bloom E.; Bloom P.C.; Blount N.L.; Blouw J.; Bly M.; Blyth S.; Boeheim C.T.; Bomben M.; Bondar A.; Bondioli M.; Bonneaud G.R.; Bonvicini G.; Booke M.; Booth J.; Borean C.; Borgland A.W.; Borsato E.; Bosi F.; Bosisio L.; Botov A.A.; Bougher J.; Bouldin K.; Bourgeois P.; Boutigny D.; Bowerman D.A.; Boyarski A.M.; Boyce R.F.; Boyd J.T.; Bozek A.; Bozzi C.; Bra?ko M.; Brandenburg G.; Brandt T.; Brau B.; Brau J.; Breon A.B.; Breton D.; Brew C.; Briand H.; Bright-Thomas P.G.; Brigljevi? V.; Britton D.I.; Brochard F.; Broomer B.; Brose J.; Browder T.E.; Brown C.L.; Brown C.M.; Brown D.N.; Browne M.; Bruinsma M.; Brunet S.; Bucci F.; Buchanan C.; Buchmueller O.L.; B�nger C.; Bugg W.; Bukin A.D.; Bula R.; Bulten H.; Burchat P.R.; Burgess W.; Burke J.P.; Button-Shafer J.; Buzykaev A.R.; Buzzo A.; Cai Y.; Calabrese R.; Calcaterra A.; Calderini G.; Camanzi B.; Campagna E.; Campagnari C.; Capra R.; Carassiti V.; Carpinelli M.; Carroll M.; Casarosa G.; Casey B.C.K.; Cason N.M.; Castelli G.; Cavallo N.; Cavoto G.; Cecchi A.; Cenci R.; Cerizza G.; Cervelli A.; Ceseracciu A.; Chai X.; Chaisanguanthum K.S.; Chang M.C.; Chang Y.H.; Chang Y.W.; Chao D.S.; Chao M.; Chao Y.; Charles E.; Chavez C.A.; Cheaib R.; Chekelian V.; Chen A.; Chen E.; Chen G.P.; Chen H.F.; Chen J.-H.; Chen J.C.; Chen K.F.; Chen P.; Chen S.; Chen W.T.; Chen X.; Chen X.R.; Chen Y.Q.; Cheng B.; Cheon B.G.; Chevalier N.; Chia Y.M.; Chidzik S.; Chilikin K.; Chistiakova M.V.; Cizeron R.; Cho I.S.; Cho K.; Chobanova V.; Choi H.H.F.; Choi K.S.; Choi S.K.; Choi Y.; Choi Y.K.; Christ S.; Chu P.H.; Chun S.; Chuvikov A.; Cibinetto G.; Cinabro D.; Clark A.R.; Clark P.J.; Clarke C.K.; Claus R.; Claxton B.; Clifton Z.C.; Cochran J.; Cohen-Tanugi J.; Cohn H.; Colberg T.; Cole S.; Colecchia F.; Condurache C.; Contri R.; Convert P.; Convery M.R.; Cooke P.; Copty N.; Cormack C.M.; Dal Corso F.; Corwin L.A.; Cossutti F.; Cote D.; Cotta Ramusino A.; Cottingham W.N.; Couderc F.; Coupal D.P.; Covarelli R.; Cowan G.; Craddock W.W.; Crane G.; Crawley H.B.; Cremaldi L.; Crescente A.; Cristinziani M.; Crnkovic J.; Crosetti G.; Cuhadar-Donszelmann T.; Cunha A.; Curry S.; D�Orazio A.; D� S.; Dahlinger G.; Dahmes B.; Dallapiccola C.; Danielson N.; Danilov M.; Das A.; Dash M.; Dasu S.; Datta M.; Daudo F.; Dauncey P.D.; David P.; Davis C.L.; Day C.T.; De Mori F.; De Domenico G.; De Groot N.; De la Vaissi�re C.; de la Vaissi�re C.; de Lesquen A.; De Nardo G.; de Sangro R.; De Silva A.; DeBarger S.; Decker F.J.; del Amo Sanchez P.; Del Buono L.; Del Gamba V.; del Re D.; Della Ricca G.; Denig A.G.; Derkach D.; Derrington I.M.; DeStaebler H.; Destree J.; Devmal S.; Dey B.; Di Girolamo B.; Marco E.D.; Dickopp M.; Dima M.O.; Dittrich S.; Dittongo S.; Dixon P.; Dneprovsky L.; Dohou F.; Doi Y.; Dole�al Z.; Doll D.A.; Donald M.; Dong L.; Dong L.Y.; Dorfan J.; Dorigo A.; Dorsten M.P.; Dowd R.; Dowdell J.; Dr�sal Z.; Dragic J.; Drummond B.W.; Dubitzky R.S.; Dubois-Felsmann G.P.; Dubrovin M.S.; Duh Y.C.; Duh Y.T.; Dujmic D.; Dungel W.; Dunwoodie W.; Dutta D.; Dvoretskii A.; Dyce N.; Ebert M.; Eckhart E.A.; Ecklund S.; Eckmann R.; Eckstein P.; Edgar C.L.; Edwards A.J.; Egede U.; Eichenbaum A.M.; Elmer P.; Emery S.; Enari Y.; Enomoto R.; Erdos E.; Erickson R.; Ernst J.A.; Erwin R.J.; Escalier M.; Eschenburg V.; Eschrich I.; Esen S.; Esteve L.; Evangelisti F.; Everton C.W.; Eyges V.; Fabby C.; Fabozzi F.; Fahey S.; Falbo M.; Fan S.; Fang F.; Fanin C.; Farbin A.; Farhat H.; Fast J.E.; Feindt M.; Fella A.; Feltresi E.; Ferber T.; Fernholz R.E.; Ferrag S.; Ferrarotto F.; Ferroni F.; Field R.C.; Filippi A.; Finocchiaro G.; Fioravanti E.; Firmino da Costa J.; Fischer P.-A.; Fisher A.S.; Fisher P.H.; Flacco C.J.; Flack R.L.; Flaecher H.U.; Flanagan J.; Flanigan J.M.; Ford K.E.; Ford W.T.; Forster I.J.; Forti A.C.; Forti F.; Fortin D.; Foster B.; Foulkes S.D.; Fouque G.; Fox J.; Franchini P.; Franco Sevilla M.; Franek B.; Frank E.D.; Fransham K.B.; Fratina S.; Fratini K.; Frey A.; Frey R.; Friedl M.; Fritsch M.; Fry J.R.; Fujii H.; Fujikawa M.; Fujita Y.; Fujiyama Y.; Fukunaga C.; Fukushima M.; Fullwood J.; Funahashi Y.; Funakoshi Y.; Furano F.; Furman M.; Furukawa K.; Futterschneider H.; Gabathuler E.; Gabriel T.A.; Gabyshev N.; Gaede F.; Gagliardi N.; Gaidot A.; Gaillard J.-M.; Gaillard J.R.; Galagedera S.; Galeazzi F.; Gallo F.; Gamba D.; Gamet R.; Gan K.K.; Gandini P.; Ganguly S.; Ganzhur S.F.; Gao Y.Y.; Gaponenko I.; Garmash A.; Garra Tico J.; Garzia I.; Gaspero M.; Gastaldi F.; Gatto C.; Gaur V.; Geddes N.I.; Geld T.L.; Genat J.-F.; George K.A.; George M.; George S.; Georgette Z.; Gershon T.J.; Gill M.S.; Gillard R.; Gilman J.D.; Giordano F.; Giorgi M.A.; Giraud P.-F.; Gladney L.; Glanzman T.; Glattauer R.; Go A.; Goetzen K.; Goh Y.M.; Gokhroo G.; Goldenzweig P.; Golubev V.B.; Gopal G.P.; Gordon A.; Gori�ek A.; Goriletsky V.I.; Gorodeisky R.; Gosset L.; Gotow K.; Gowdy S.J.; Graffin P.; Grancagnolo S.; Grauges E.; Graziani G.; Green M.G.; Greene M.G.; Grenier G.J.; Grenier P.; Griessinger K.; Grillo A.A.; Grinyov B.V.; Gritsan A.V.; Grosdidier G.; Grosse Perdekamp M.; Grosso P.; Grothe M.; Groysman Y.; Gr�nberg O.; Guido E.; Guler H.; Gunawardane N.J.W.; Guo Q.H.; Guo R.S.; Guo Z.J.; Guttman N.; Ha H.; Ha H.C.; Haas T.; Haba J.; Hachtel J.; Hadavand H.K.; Hadig T.; Hagner C.; Haire M.; Haitani F.; Haji T.; Haller G.; Halyo V.; Hamano K.; Hamasaki H.; Hamel de Monchenault G.; Hamilton J.; Hamilton R.; Hamon O.; Han B.Y.; Han Y.L.; Hanada H.; Hanagaki K.; Handa F.; Hanson J.E.; Hanushevsky A.; Hara K.; Hara T.; Harada Y.; Harrison P.F.; Harrison T.J.; Harrop B.; Hart A.J.; Hart P.A.; Hartfiel B.L.; Harton J.L.; Haruyama T.; Hasan A.; Hasegawa Y.; Hast C.; Hastings N.C.; Hasuko K.; Hauke A.; Hawkes C.M.; Hayashi K.; Hazumi M.; Hee C.; Heenan E.M.; Heffernan D.; Held T.; Henderson R.; Henderson S.W.; Hertzbach S.S.; Herv� S.; He� M.; Heusch C.A.; Hicheur A.; Higashi Y.; Higasino Y.; Higuchi I.; Hikita S.; Hill E.J.; Himel T.; Hinz L.; Hirai T.; Hirano H.; Hirschauer J.F.; Hitlin D.G.; Hitomi N.; Hodgkinson M.C.; H�cker A.; Hoi C.T.; Hojo T.; Hokuue T.; Hollar J.J.; Hong T.M.; Honscheid K.; Hooberman B.; Hopkins D.A.; Horii Y.; Hoshi Y.; Hoshina K.; Hou S.; Hou W.S.; Hryn�ova T.; Hsiung Y.B.; Hsu C.L.; Hsu S.C.; Hu H.; Hu T.; Huang H.C.; Huang T.J.; Huang Y.C.; Huard Z.; Huffer M.E.; Hufnagel D.; Hung T.; Hutchcroft D.E.; Hyun H.J.; Ichizawa S.; Igaki T.; Igarashi A.; Igarashi S.; Igarashi Y.; Igonkina O.; Ikado K.; Ikeda H.; Ikeda H.; Ikeda K.; Ilic J.; Inami K.; Innes W.R.; Inoue Y.; Ishikawa A.; Ishino H.; Itagaki K.; Itami S.; Itoh K.; Ivanchenko V.N.; Iverson R.; Iwabuchi M.; Iwai G.; Iwai M.; Iwaida S.; Iwamoto M.; Iwasaki H.; Iwasaki M.; Iwashita T.; Izen J.M.; Jackson D.J.; Jackson F.; Jackson G.; Jackson P.S.; Jacobsen R.G.; Jacoby C.; Jaegle I.; Jain V.; Jalocha P.; Jang H.K.; Jasper H.; Jawahery A.; Jayatilleke S.; Jen C.M.; Jensen F.; Jessop C.P.; Ji X.B.; John M.J.J.; Johnson D.R.; Johnson J.R.; Jolly S.; Jones M.; Joo K.K.; Joshi N.; Joshi N.J.; Judd D.; Julius T.; Kadel R.W.; Kadyk J.A.; Kagan H.; Kagan R.; Kah D.H.; Kaiser S.; Kaji H.; Kajiwara S.; Kakuno H.; Kameshima T.; Kaminski J.; Kamitani T.; Kaneko J.; Kang J.H.; Kang J.S.; Kani T.; Kapusta P.; Karbach T.M.; Karolak M.; Karyotakis Y.; Kasami K.; Katano G.; Kataoka S.U.; Katayama N.; Kato E.; Kato Y.; Kawai H.; Kawai M.; Kawamura N.; Kawasaki T.; Kay J.; Kay M.; Kelly M.P.; Kelsey M.H.; Kent N.; Kerth L.T.; Khan A.; Khan H.R.; Kharakh D.; Kibayashi A.; Kichimi H.; Kiesling C.; Kikuchi M.; Kikutani E.; Kim B.H.; Kim C.H.; Kim D.W.; Kim H.; Kim H.J.; Kim H.O.; Kim H.W.; Kim J.B.; Kim J.H.; Kim K.T.; Kim M.J.; Kim P.; Kim S.K.; Kim S.M.; Kim T.H.; Kim Y.I.; Kim Y.J.; King G.J.; Kinoshita K.; Kirk A.; Kirkby D.; Kitayama I.; Klemetti M.; Klose V.; Klucar J.; Knecht N.S.; Knoepfel K.J.; Knowles D.J.; Ko B.R.; Kobayashi N.; Kobayashi S.; Kobayashi T.; Kobel M.J.; Koblitz S.; Koch H.; Kocian M.L.; Kody� P.; Koeneke K.; Kofler R.; Koike S.; Koishi S.; Koiso H.; Kolb J.A.; Kolya S.D.; Kondo Y.; Konishi H.; Koppenburg P.; Koptchev V.B.; Kordich T.M.B.; Korol A.A.; Korotushenko K.; Korpar S.; Kouzes R.T.; Kovalskyi D.; Kowalewski R.; Kozakai Y.; Kozanecki W.; Kral J.F.; Krasnykh A.; Krause R.; Kravchenko E.A.; Krebs J.; Kreisel A.; Kreps M.; Krishnamurthy M.; Kroeger R.; Kroeger W.; Krokovny P.; Kronenbitter B.; Kroseberg J.; Kubo T.; Kuhr T.; Kukartsev G.; Kulasiri R.; Kulikov A.; Kumar R.; Kumar S.; Kumita T.; Kuniya T.; Kunze M.; Kuo C.C.; Kuo T.-L.; Kurashiro H.; Kurihara E.; Kurita N.; Kuroki Y.; Kurup A.; Kutter P.E.; Kuznetsova N.; Kvasni?ka P.; Kyberd P.; Kyeong S.H.; Lacker H.M.; Lae C.K.; Lamanna E.; Lamsa J.; Lanceri L.; Landi L.; Lang M.I.; Lange D.J.; Lange J.S.; Langenegger U.; Langer M.; Lankford A.J.; Lanni F.; Laplace S.; Latour E.; Lau Y.P.; Lavin D.R.; Layter J.; Lebbolo H.; LeClerc C.; Leddig T.; Leder G.; Le Diberder F.; Lee C.L.; Lee J.; Lee J.S.; Lee M.C.; Lee M.H.; Lee M.J.; Lee S.-J.; Lee S.E.; Lee S.H.; Lee Y.J.; Lees J.P.; Legendre M.; Leitgab M.; Leitner R.; Leonardi E.; Leonidopoulos C.; Lepeltier V.; Leruste P.; Lesiak T.; Levi M.E.; Levy S.L.; Lewandowski B.; Lewczuk M.J.; Lewis P.; Li H.; Li H.B.; Li S.; Li X.; Li Y.; Gioi L.L.; Libby J.; Lidbury J.; Lillard V.; Lim C.L.; Limosani A.; Lin C.S.; Lin J.Y.; Lin S.W.; Lin Y.S.; Lindquist B.; Lindsay C.; Lista L.; Liu C.; Liu F.; Liu H.; Liu H.M.; Liu J.; Liu R.; Liu T.; Liu Y.; Liu Z.Q.; Liventsev D.; Lo Vetere M.; Locke C.B.; Lockman W.S.; Di Lodovico F.; Lombardo V.; London G.W.; Lopes Pegna D.; Lopez L.; Lopez-March N.; Lory J.; LoSecco J.M.; Lou X.C.; Louvot R.; Lu A.; Lu C.; Lu M.; Lu R.S.; Lueck T.; Luitz S.; Lukin P.; Lund P.; Luppi E.; Lutz A.M.; Lutz O.; Lynch G.; Lynch H.L.; Lyon A.J.; Lyubinsky V.R.; MacFarlane D.B.; Mackay C.; MacNaughton J.; Macri M.M.; Madani S.; Mader W.F.; Majewski S.A.; Majumder G.; Makida Y.; Malaescu B.; Malaguti R.; Malcl�s J.; Mallik U.; Maly E.; Mamada H.; Manabe A.; Mancinelli G.; Mandelkern M.; Mandl F.; Manfredi P.F.; Mangeol D.J.J.; Manoni E.; Mao Z.P.; Margoni M.; Marker C.E.; Markey G.; Marks J.; Marlow D.; Marques V.; Marsiske H.; Martellotti S.; Martin E.C.; Martin J.P.; Martin L.; Martinez A.J.; Marzolla M.; Mass A.; Masuzawa M.; Mathieu A.; Matricon P.; Matsubara T.; Matsuda T.; Matsuda T.; Matsumoto H.; Matsumoto S.; Matsumoto T.; Matsuo H.; Mattison T.S.; Matvienko D.; Matyja A.; Mayer B.; Mazur M.A.; Mazzoni M.A.; McCulloch M.; McDonald J.; McFall J.D.; McGrath P.; McKemey A.K.; McKenna J.A.; Mclachlin S.E.; McMahon S.; McMahon T.R.; McOnie S.; Medvedeva T.; Melen R.; Mellado B.; Menges W.; Menke S.; Merchant A.M.; Merkel J.; Messner R.; Metcalfe S.; Metzler S.; Meyer N.T.; Meyer T.I.; Meyer W.T.; Michael A.K.; Michelon G.; Michizono S.; Micout P.; Miftakov V.; Mihalyi A.; Mikami Y.; Milanes D.A.; Milek M.; Mimashi T.; Minamora J.S.; Mindas C.; Minutoli S.; Mir L.M.; Mishra K.; Mitaroff W.; Miyake H.; Miyashita T.S.; Miyata H.; Miyazaki Y.; Moffitt L.C.; Mohanty G.B.; Mohapatra A.; Mohapatra A.K.; Mohapatra D.; Moll A.; Moloney G.R.; Mols J.P.; Mommsen R.K.; Monge M.R.; Monorchio D.; Moore T.B.; Moorhead G.F.; Mora de Freitas P.; Morandin M.; Morgan N.; Morgan S.E.; Morganti M.; Morganti S.; Mori S.; Mori T.; Morii M.; Morris J.P.; Morsani F.; Morton G.W.; Moss L.J.; Mouly J.P.; Mount R.; Mueller J.; M�ller-Pfefferkorn R.; Mugge M.; Muheim F.; Muir A.; Mullin E.; Munerato M.; Murakami A.; Murakami T.; Muramatsu N.; Musico P.; Nagai I.; Nagamine T.; Nagasaka Y.; Nagashima Y.; Nagayama S.; Nagel M.; Naisbit M.T.; Nakadaira T.; Nakahama Y.; Nakajima M.; Nakajima T.; Nakamura I.; Nakamura T.; Nakamura T.T.; Nakano E.; Nakayama H.; Nam J.W.; Narita S.; Narsky I.; Nash J.A.; Natkaniec Z.; Nauenberg U.; Nayak M.; Neal H.; Nedelkovska E.; Negrini M.; Neichi K.; Nelson D.; Nelson S.; Neri N.; Nesom G.; Neubauer S.; Newman-Coburn D.; Ng C.; Nguyen X.; Nicholson H.; Niebuhr C.; Nief J.Y.; Niiyama M.; Nikolich M.B.; Nisar N.K.; Nishimura K.; Nishio Y.; Nitoh O.; Nogowski R.; Noguchi S.; Nomura T.; Nordby M.; Nosochkov Y.; Novokhatski A.; Nozaki S.; Nozaki T.; Nugent I.M.; O�Grady C.P.; O�Neale S.W.; O�Neill F.G.; Oberhof B.; Oddone P.J.; Ofte I.; Ogawa A.; Ogawa K.; Ogawa S.; Ogawa Y.; Ohkubo R.; Ohmi K.; Ohnishi Y.; Ohno F.; Ohshima T.; Ohshima Y.; Ohuchi N.; Oide K.; Oishi N.; Okabe T.; Okazaki N.; Okazaki T.; Okuno S.; Olaiya E.O.; Olivas A.; Olley P.; Olsen J.; Ono S.; Onorato G.; Onuchin A.P.; Onuki Y.; Ooba T.; Orimoto T.J.; Oshima T.; Osipenkov I.L.; Ostrowicz W.; Oswald C.; Otto S.; Oyang J.; Oyanguren A.; Ozaki H.; Ozcan V.E.; Paar H.P.; Padoan C.; Paick K.; Palka H.; Pan B.; Pan Y.; Panduro Vazquez W.; Panetta J.; Panova A.I.; Panvini R.S.; Panzenb�ck E.; Paoloni E.; Paolucci P.; Pappagallo M.; Paramesvaran S.; Park C.S.; Park C.W.; Park H.; Park H.K.; Park K.S.; Park W.; Parry R.J.; Parslow N.; Passaggio S.; Pastore F.C.; Patel P.M.; Patrignani C.; Patteri P.; Pavel T.; Pavlovich J.; Payne D.J.; Peak L.S.; Peimer D.R.; Pelizaeus M.; Pellegrini R.; Pelliccioni M.; Peng C.C.; Peng J.C.; Peng K.C.; Peng T.; Penichot Y.; Pennazzi S.; Pennington M.R.; Penny R.C.; Penzkofer A.; Perazzo A.; Perez A.; Perl M.; Pernicka M.; Perroud J.-P.; Peruzzi I.M.; Pestotnik R.; Peters K.; Peters M.; Petersen B.A.; Petersen T.C.; Petigura E.; Petrak S.; Petrella A.; Petri? M.; Petzold A.; Pia M.G.; Piatenko T.; Piccolo D.; Piccolo M.; Piemontese L.; Piemontese M.; Pierini M.; Pierson S.; Pioppi M.; Piredda G.; Pivk M.; Plaszczynski S.; Polci F.; Pompili A.; Poropat P.; Posocco M.; Potter C.T.; Potter R.J.L.; Prasad V.; Prebys E.; Prencipe E.; Prendki J.; Prepost R.; Prest M.; Prim M.; Pripstein M.; Prudent X.; Pruvot S.; Puccio E.M.T.; Purohit M.V.; Qi N.D.; Quinn H.; Raaf J.; Rabberman R.; Raffaelli F.; Ragghianti G.; Rahatlou S.; Rahimi A.M.; Rahmat R.; Rakitin A.Y.; Randle-Conde A.; Rankin P.; Rashevskaya I.; Ratkovsky S.; Raven G.; Re V.; Reep M.; Regensburger J.J.; Reidy J.; Reif R.; Reisert B.; Renard C.; Renga F.; Ricciardi S.; Richman J.D.; Ritchie J.L.; Ritter M.; Rivetta C.; Rizzo G.; Roat C.; Robbe P.; Roberts D.A.; Robertson A.I.; Robutti E.; Rodier S.; Rodriguez D.M.; Rodriguez J.L.; Rodriguez R.; Roe N.A.; R�hrken M.; Roethel W.; Rolquin J.; Romanov L.; Romosan A.; Ronan M.T.; Rong G.; Ronga F.J.; Roos L.; Root N.; Rosen M.; Rosenberg E.I.; Rossi A.; Rostomyan A.; Rotondo M.; Roussot E.; Roy J.; Rozanska M.; Rozen Y.; Rozen Y.; Rubin A.E.; Ruddick W.O.; Ruland A.M.; Rybicki K.; Ryd A.; Ryu S.; Ryuko J.; Sabik S.; Sacco R.; Saeed M.A.; Safai Tehrani F.; Sagawa H.; Sahoo H.; Sahu S.; Saigo M.; Saito T.; Saitoh S.; Sakai K.; Sakamoto H.; Sakaue H.; Saleem M.; Salnikov A.A.; Salvati E.; Salvatore F.; Samuel A.; Sanders D.A.; Sanders P.; Sandilya S.; Sandrelli F.; Sands W.; Sands W.R.; Sanpei M.; Santel D.; Santelj L.; Santoro V.; Santroni A.; Sanuki T.; Sarangi T.R.; Saremi S.; Sarti A.; Sasaki T.; Sasao N.; Satapathy M.; Sato N.; Sato N.; Sato Y.; Satoyama N.; Satpathy A.; Savinov V.; Savvas N.; Saxton O.H.; Sayeed K.; Schaffner S.F.; Schalk T.; Schenk S.; Schieck J.R.; Schietinger T.; Schilling C.J.; Schindler R.H.; Schmid S.; Schmitz R.E.; Schmuecker H.; Schneider O.; Schnell G.; Sch�nmeier P.; Schofield K.C.; Schott G.; Schr�der H.; Schram M.; Schubert J.; Sch�mann J.; Schultz J.; Schumm B.A.; Schune M.H.; Schwanke U.; Schwarz H.; Schwiening J.; Schwierz R.; Schwitters R.F.; Sciacca C.; Sciolla G.; Scott I.J.; Seeman J.; Seiden A.; Seitz R.; Seki T.; Sekiya A.I.; Semenov S.; Semmler D.; Sen S.; Senyo K.; Seon O.; Serbo V.V.; Serednyakov S.I.; Serfass B.; Serra M.; Serrano J.; Settai Y.; Seuster R.; Sevior M.E.; Shakhova K.V.; Shang L.; Shapkin M.; Sharma V.; Shebalin V.; Shelkov V.G.; Shen B.C.; Shen D.Z.; Shen Y.T.; Sherwood D.J.; Shibata T.; Shibata T.A.; Shibuya H.; Shidara T.; Shimada K.; Shimoyama M.; Shinomiya S.; Shiu J.G.; Shorthouse H.W.; Shpilinskaya L.I.; Sibidanov A.; Sicard E.; Sidorov A.; Sidorov V.; Siegle V.; Sigamani M.; Simani M.C.; Simard M.; Simi G.; Simon F.; Simonetto F.; Sinev N.B.; Singh H.; Singh J.B.; Sinha R.; Sitt S.; Skovpen Y.I.; Sloane R.J.; Smerkol P.; Smith A.J.S.; Smith D.; Smith D.S.; Smith J.G.; Smol A.; Snoek H.L.; Snyder A.; So R.Y.; Sobie R.J.; Soderstrom E.; Soha A.; Sohn Y.S.; Sokoloff M.D.; Sokolov A.; Solagna P.; Solovieva E.; Soni N.; Sonnek P.; Sordini V.; Spaan B.; Spanier S.M.; Spencer E.; Speziali V.; Spitznagel M.; Spradlin P.; Staengle H.; Stamen R.; Stanek M.; Stani? S.; Stark J.; Steder M.; Steininger H.; Steinke M.; Stelzer J.; Stevanato E.; Stocchi A.; Stock R.; Stoeck H.; Stoker D.P.; Stroili R.; Strom D.; Strother P.; Strube J.; Stugu B.; Stypula J.; Su D.; Suda R.; Sugahara R.; Sugi A.; Sugimura T.; Sugiyama A.; Suitoh S.; Sullivan M.K.; Sumihama M.; Sumiyoshi T.; Summers D.J.; Sun L.; Sun S.; Sundermann J.E.; Sung H.F.; Susaki Y.; Sutcliffe P.; Suzuki A.; Suzuki J.; Suzuki J.I.; Suzuki K.; Suzuki S.; Suzuki S.Y.; Swain J.E.; Swain S.K.; T�Jampens S.; Tabata M.; Tackmann K.; Tajima H.; Tajima O.; Takahashi K.; Takahashi S.; Takahashi T.; Takasaki F.; Takayama T.; Takita M.; Tamai K.; Tamponi U.; Tamura N.; Tan N.; Tan P.; Tanabe K.; Tanabe T.; Tanaka H.A.; Tanaka J.; Tanaka M.; Tanaka S.; Tanaka Y.; Tanida K.; Taniguchi N.; Taras P.; Tasneem N.; Tatishvili G.; Tatomi T.; Tawada M.; Taylor F.; Taylor G.N.; Taylor G.P.; Telnov V.I.; Teodorescu L.; Ter-Antonyan R.; Teramoto Y.; Teytelman D.; Th�rin G.; Thiebaux C.; Thiessen D.; Thomas E.W.; Thompson J.M.; Thorne F.; Tian X.C.; Tibbetts M.; Tikhomirov I.; Tinslay J.S.; Tiozzo G.; Tisserand V.; Tocut V.; Toki W.H.; Tomassini E.W.; Tomoto M.; Tomura T.; Torassa E.; Torrence E.; Tosi S.; Touramanis C.; Toussaint J.C.; Tovey S.N.; Trapani P.P.; Treadwell E.; Triggiani G.; Trincaz-Duvoid S.; Trischuk W.; Troost D.; Trunov A.; Tsai K.L.; Tsai Y.T.; Tsujita Y.; Tsukada K.; Tsukamoto T.; Tuggle J.M.; Tumanov A.; Tung Y.W.; Turnbull L.; Turner J.; Turri M.; Uchida K.; Uchida M.; Uchida Y.; Ueki M.; Ueno K.; Ujiie N.; Ulmer K.A.; Unno Y.; Urquijo P.; Ushiroda Y.; Usov Y.; Usseglio M.; Usuki Y.; Uwer U.; Va�vra J.; Vahsen S.E.; Vaitsas G.; Valassi A.; Vallazza E.; Vallereau A.; Vanhoefer P.; van Hoek W.C.; Van Hulse C.; van Winkle D.; Varner G.; Varnes E.W.; Varvell K.E.; Vasileiadis G.; Velikzhanin Y.S.; Verderi M.; Versill� S.; Vervink K.; Viaud B.; Vidal P.B.; Villa S.; Villanueva-Perez P.; Vinograd E.L.; Vitale L.; Vitug G.M.; Vo� C.; Voci C.; Voena C.; Volk A.; von Wimmersperg-Toeller J.H.; Vorobyev V.; Vossen A.; Vuagnin G.; Vuosalo C.O.; Wacker K.; Wagner A.P.; Wagner D.L.; Wagner G.; Wagner M.N.; Wagner S.R.; Wagoner D.E.; Walker D.; Walkowiak W.; Wallom D.; Wang C.C.; Wang C.H.; Wang J.; Wang J.G.; Wang K.; Wang L.; Wang L.L.; Wang P.; Wang T.J.; Wang W.F.; Wang X.L.; Wang Y.F.; Wappler F.R.; Watanabe M.; Watson A.T.; Watson J.E.; Watson N.K.; Watt M.; Weatherall J.H.; Weaver M.; Weber T.; Wedd R.; Wei J.T.; Weidemann A.W.; Weinstein A.J.R.; Wenzel W.A.; West C.A.; West C.G.; West T.J.; White E.; White R.M.; Wicht J.; Widhalm L.; Wiechczynski J.; Wienands U.; Wilden L.; Wilder M.; Williams D.C.; Williams G.; Williams J.C.; Williams K.M.; Williams M.I.; Willocq S.Y.; Wilson J.R.; Wilson M.G.; Wilson R.J.; Winklmeier F.; Winstrom L.O.; Winter M.A.; Wisniewski W.J.; Wittgen M.; Wittlin J.; Wittmer W.; Wixted R.; Woch A.; Wogsland B.J.; Won E.; Wong Q.K.; Wray B.C.; Wren A.C.; Wright D.M.; Wu C.H.; Wu J.; Wu S.L.; Wulsin H.W.; Xella S.M.; Xie Q.L.; Xie Y.; Xu Z.Z.; Y�che C.; Yamada Y.; Yamaga M.; Yamaguchi A.; Yamaguchi H.; Yamaki T.; Yamamoto H.; Yamamoto N.; Yamamoto R.K.; Yamamoto S.; Yamanaka T.; Yamaoka H.; Yamaoka J.; Yamaoka Y.; Yamashita Y.; Yamauchi M.; Yan D.S.; Yan Y.; Yanai H.; Yanaka S.; Yang H.; Yang R.; Yang S.; Yarritu A.K.; Yashchenko S.; Yashima J.; Yasin Z.; Yasu Y.; Ye S.W.; Yeh P.; Yi J.I.; Yi K.; Yi M.; Yin Z.W.; Ying J.; Yocky G.; Yokoyama K.; Yokoyama M.; Yokoyama T.; Yoshida K.; Yoshida M.; Yoshimura Y.; Young C.C.; Yu C.X.; Yu Z.; Yuan C.Z.; Yuan Y.; Yumiceva F.X.; Yusa Y.; Yushkov A.N.; Yuta H.; Zacek V.; Zain S.B.; Zallo A.; Zambito S.; Zander D.; Zang S.L.; Zanin D.; Zaslavsky B.G.; Zeng Q.L.; Zghiche A.; Zhang B.; Zhang J.; Zhang J.; Zhang L.; Zhang L.M.; Zhang S.Q.; Zhang Z.P.; Zhao H.W.; Zhao M.; Zhao Z.G.; Zheng Y.; Zheng Y.H.; Zheng Z.P.; Zhilich V.; Zhou P.; Zhu R.Y.; Zhu Y.S.; Zhu Z.M.; Zhulanov V.; Ziegler T.; Ziegler V.; Zioulas G.; Zisman M.; Zito M.; Z�rcher D.; Zwahlen N.; Zyukova O.; �ivko T.; �ontar D.[No abstract available]Item Static and dynamic analysis of a hyperelastic toroidal air-spring structure(2025) Sahu S.; Roychowdhury S.The present work proposes a novel toroidal air-spring model consisting of two cylindrical elastomeric membranes unlike conventional convoluted air-spring with one rubber bellow. The membranes are attached with two annular plates at top and bottom in circumferential direction, forming a closed space in between. With internally pressurizing the setup, the inflated bellow in the shape of a toroidal air-spring structure is formed. The static and dynamic analysis of the air-spring model is performed under transverse loading on top plate. The static analysis is carried out by compressing the air-spring to different suspension heights, assuming adiabatic compression of the enclosed air. The conditions for impending wrinkling, its prevention measures by choosing suitable design parameters, and the effect using cord-reinforced membranes are explored. The dynamic study under harmonic forcing is performed using the method of assumed modes coupled with a perturbation technique to solve the Eigenvalue problem of the discretized membrane structure. The radial asymmetric perturbations are included in the formulation to explore the symmetry breaking during dynamic study. The Eigen frequencies of the structure are obtained for different inflation pressures of the air-spring. Interestingly, a frequency veering phenomenon is observed between a few Eigen modes associated with closely spaced natural frequencies, where the possibility of mode swapping exists. The forced vibration analysis around a few Eigen frequencies shows beating like responses. The stiffness of the proposed air-spring is found to be linear under both static and dynamic conditions, which is inline with the stiffness nature of the convectional convoluted air-springs. � 2024 Elsevier Masson SASItem Study of electronic and magnetic properties of h-BN on Ni surfaces: A DFT approach(2018) Sahoo M.R.; Sahu S.; Kushwaha A.K.; Nayak S.Hexagonal boron nitride (h-BN) is a promising material for implementation in spintronics due to large band gap, low spin-orbit coupling, and a small lattice mismatch to graphene and close-packedsurfaces of fcc-Ni(111). Electronic and magnetic properties of single layer hexagonal Boron Nitride (h-BN) on Ni (111) surface have been studied with density functional calculation. Since lattice constants of nickel surfaces are very close to that of h-BN, nickel acts as a good substrate. We found that the interaction between 2Pz - 3dz2 orbitals leads to change in electronic band structure as well as density of states which results spin polarization in h-BN. � 2018 Author(s).Item Theoretical Model Study of Interplay of Coulomb Interaction and Electron-Phonon Interaction in the Thermal Properties of Monolayer Graphene(2019) Sahu S.; Rout G.C.We propose here a tight-binding (TB) model Hamiltonian for monolayer graphene-on-substrate describing the nearest-neighbor-hopping, on-site Coulomb interaction on the sub-lattices and the electron-phonon interaction under the high-frequency limit of phonon vibration. Applying Lang-Firsov canonical transformation, the electron and phonon systems are decoupled in the atomic Hamiltonian, such that the effective Coulomb interaction and effective nearest-neighbor-hopping integral respectively appear as ?= U? 2 t 1 ? and t~1=t1e?t1??0, where U, t 1 , ? and ? 0 are respectively Coulomb energy, nearest-neighbor-hopping integral, electron-phonon (e-ph) coupling and phonon frequency. The effective Coulomb interaction in the Hamiltonian is considered within mean-field approximation. The Hamiltonian is solved by Zubarev�s Green�s function technique. The temperature-dependent electronic entropy and specific heat are calculated from the free energy of graphene system and are computed numerically. The temperature-dependent electronic specific heat exhibits a charge gap peak at room temperature arising due to the effect of Coulomb interaction and electron-phonon interaction. The evolution of these peaks in specific heat is investigated by varying the model parameters of the system. � 2018, Springer Science+Business Media, LLC, part of Springer Nature.Item Theoretical study of modified electron band dispersion and density of states due to high frequency phonons in graphene-on-substrates(2018) Sahu S.; Rout G.C.We propose here a theoretical model for the study of band gap opening in graphene-on-polarizable substrate taking the effect of electron-electron and electron-phonon (EP) interactions at high frequency phonon vibrations. The Hamiltonian consists of hopping of electrons upto third nearest-neighbors and the effect substrate, where A sublattice site is raised by energy + ? and B sublattice site is suppressed by energy-?, hence producing a band gap energy of 2?. Further, we have considered Hubbard type electron-electron repulsive interactions at A and B sublattices, which are considered within Hartree-Fock meanfield approximation. The electrons in the graphene plane interact with the phonon's present in the polarized substrate in the presence of phonon vibrational energy within harmonic approximation. The temperature-dependent electron occupancies are computed numerically and self-consistently for both spins at both the sublattice sites. By using these electron occupancies, we have calculated the electron band dispersion and density of states (DOS), which are studied for the effects of EP interaction, high phonon frequency, Coulomb energy and substrate induced gap. � 2018 World Scientific Publishing Europe Ltd.Item The theoretical study of the correlation between band filling and Coulomb interaction in the charge gap of graphene-on-substrate in paramagnetic limit(2019) Panda R.; Sahu S.; Rout G.C.A suitable substrate breaks the sub-lattice symmetry leading to generation of a gap at the Fermi level. We propose here a tight binding model Hamiltonian for graphene on a substrate with nearest neighbour-hopping in presence of symmetry breaking interaction due to substrate effect. The sub-lattice Coulomb interaction between the electrons which produces varieties of magnetic, non-magnetic and collective interactions is considered within mean-field approximation in the paramagnetic limit. The Hamiltonian is solved by Zubarev�s double time Green�s function technique. The electron occupancies of the two sub-lattices are calculated from the correlation functions. Finally, the expression for the temperature dependent charge gap is derived and calculated numerically. The evolution of the charge gap in graphene is investigated by varying the Coulomb interaction, electron-occupancy and substrate induced gap. The magnitude of the electron occupancy at A-site becomes larger than that at B-site indicating symmetry breaking of the two sub-lattices of graphene. Copyright � 2019 Inderscience Enterprises Ltd.Item Tight-Binding Model Study of Anti-ferromagnetic Order in AA-Stacked Bi-layer Graphene(2018) Sahu S.; Rout G.C.We address here the anti-ferromagnetic order present in AA-stacked bi-layer graphene in a transversely applied electric field. The system is described by kinetic energy with nearest-neighbor electron hopping with same hopping integral t1 for both the layers. Besides this, Coulomb interaction exists at A and B sub-lattices with same Coulomb correlation energy. The electron Green�s functions are calculated by Zubarev�s Green�s technique. The temperature-dependent anti-ferromagnetic magnetization is calculated from the Green�s function and is computed numerically and self-consistently. The strong on-site Coulomb interaction stabilizes the anti-ferromagnetic order in graphene. We assume that the electron spin at A site in the first layer is directed in the opposite direction to that of A site electron in the second layer. Similar spin order is observed for electrons in B site atom in reversed order. It is observed that anti-ferromagnetic (AFM) magnetization in the first layer nearly remains constant up to certain temperature and then increases with temperature, while the AFM magnetization in the second layer remains nearly constant and then rapidly decreases with temperature. The net AFM magnetization in bi-layer graphene remains constant and then rapidly increases with temperature. The evolution of the AFM magnetization is studied by varying transverse electric field, Coulomb energy, and temperature. � 2017, Springer Science+Business Media New York.Item The tight-binding model study of the role of electron occupancy on the ferromagnetic gap in graphene-on-substrate(2019) Swain R.; Sahu S.; Rout G.C.We propose here a theoretical model for graphene in its ferromagnetic phase. The Hamiltonian describes electron hoppings up-to-third-nearest neighbours for graphene-on-substrate. The sub-lattice coulomb interactions within mean-field approach involve the total electron occupancy and ferromagnetic magnetisations (FMs). The temperature dependent ferromagnetic magnetisation and hence, the ferromagnetic gap are derived from the electron Green�s functions and are solved self-consistently. The result shows that the magnitude of the ferromagnetic gap and the critical coulomb interaction strongly depend on total electron occupancy. The critical coulomb interaction decreases with increase of electron occupancy and the vice-versa. Copyright � 2019 Inderscience Enterprises Ltd.Item Tight-Binding Theoretical Study of the Tunneling Conductance in Ferromagnetically Ordered Graphene-on-Substrate(2018) Swain R.; Sahu S.; Rout G.C.We report here a tight-binding theoretical study of the tunneling conductance and temperature dependent specific heat of graphene-on-substrate. The Hamiltonian consists of the electron hoppings up to third nearest neighbors in the presence of doping and on-site Coulomb interactions at two sub-lattices of honey-comb lattice. The total Hamiltonian is solved by Zubarev Green�s functions technique. Then, the sub-lattice magnetizations, tunneling conductance, and specific heat are calculated from the Green�s functions and are computed numerically. The effect of impurity, substrate induced gap, and repulsive Coulomb potential on tunneling conductance is discussed. The anomaly in specific heat at low temperatures is described. � 2017, Springer Science+Business Media, LLC, part of Springer Nature.