IDR Logo

Please use this identifier to cite or link to this item:
Title: Design of computationally efficient density-based clustering algorithms
Authors: Nanda S.J.
Panda G.
Keywords: Clustering, classification, and association rules
Fast DBC
Mining methods and algorithms
Physical action datasets
Seismic catalog of Japan
Issue Date: 2015
Citation: 23
Abstract: The basic DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm uses minimum number of input parameters, very effective to cluster large spatial databases but involves more computational complexity. The present paper proposes a new strategy to reduce the computational complexity associated with the DBSCAN by efficiently implementing new merging criteria at the initial stage of evolution of clusters. Further new density based clustering (DBC) algorithms are proposed considering correlation coefficient as similarity measure. These algorithms though computationally not efficient, found to be effective when there is high similarity between patterns of dataset. The computations associated with DBC based on correlation algorithms are reduced with new cluster merging criteria. Test on several synthetic and real datasets demonstrates that these computationally efficient algorithms are comparable in accuracy to the traditional one. An interesting application of the proposed algorithm has been demonstrated to identify the regional hazard regions present in the seismic catalog of Japan. � 2014 Elsevier B.V. All rights reserved.
Appears in Collections:Research Publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.