IDR Logo

Please use this identifier to cite or link to this item:
Title: Oxidative and membrane stress-mediated antibacterial activity of WS2 and rGO-WS2 nanosheets
Authors: Navale G.R.
Rout C.S.
Gohil K.N.
Dharne M.S.
Late D.J.
Shinde S.S.
Issue Date: 2015
Citation: 27
Abstract: Graphene-based materials have strong cytotoxic attributes against bacteria due to their unique physicochemical properties. We examined the antibacterial activities of nanosheets of the graphene analogue tungsten disulphide (WS2) and a composite of reduced graphene oxide-tungsten disulphide (rGO-WS2), comparing them with reduced graphene oxide (rGO) by a time and concentration dependent viability assay and growth curve studies against four bacterial strains: Gram negative Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), and Gram positive Bacillus subtilis (B. subtilis) and Staphylococcus epidermidis (S. epidermidis). The nanosheets of the rGO-WS2 composite caused a more significant retardation in bacterial growth and inhibitory effect on the tested bacterial strains than WS2, followed by rGO. The tested E. coli and B. subtilis strains were more susceptible than the other strains. A mechanistic study revealed that rGO and WS2 did not produce the superoxide anion (O2-) or reactive oxygen species (ROS), but the nanocomposite of rGO-WS2 did produce both. However, all these materials did oxidize glutathione, which serves as a redox state mediator in bacteria. We conclude that the antimicrobial mechanism is due to the combined effect of initial cell deposition on the rGO-WS2 materials, the membrane stress due to direct contact with the nanosheets, and the produced superoxide anion-independent oxidation mechanisms. The beneficial aspects of the physicochemical properties of rGO-WS2, such as its size and conductivity, can be precisely customized to reduce its health and environmental risk factors. � The Royal Society of Chemistry 2015.
Appears in Collections:Research Publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.