IDR Logo

Please use this identifier to cite or link to this item: http://idr.iitbbs.ac.in/jspui/handle/2008/2248
Title: Multimodal Gait Recognition with Inertial Sensor Data and Video Using Evolutionary Algorithm
Authors: Kumar P.
Mukherjee S.
Saini R.
Kaushik P.
Roy P.P.
Dogra D.P.
Keywords: Biometric
deep learning
gait analysis
gray Wolf optimizer (GWO)
Shadow Motion
Issue Date: 2019
Citation: 3
Abstract: Evolutionary decision fusion has applications in biometric authentication and verification. Gray wolf optimizer (GWO) is one such evolutionary decision fusion approach that can be used to tune the fusion parameters in a multimodal data acquisition system. Human gait is a proven biometric trait with applications in security and authentication. However, acquiring human-gait data can be erroneous due to various factors and multimodal fusion of such erroneous gait data can be challenging. In this paper, we propose a new decision fusion-based approach to solve the above problem. Gait data is recorded simultaneously using motion sensors and visible-light camera. The signals of the motion sensors are modeled using a long short-term memory neural network and corresponding video recordings are processed using a three-dimensional convolutional neural network. GWO has been used to optimize the parameters during fusion. It has been chosen based on the underlying hunting strategy that leads to better approximation of the solution. Interestingly, in our case it converges quicker than other optimization techniques such as genetic algorithm or particle swarm optimization. To test the model, a dataset involving 23 males and females has been recorded while they perform four different types of walks, including, normal walk, fast walk, walking while listening to music, and walking while watching multimedia content on a mobile. An overall accuracy of 91.3% has been recorded across all test scenarios. Results reveal that the proposed study can further be explored to design robust gait biometric systems. � 1993-2012 IEEE.
URI: http://dx.doi.org/10.1109/TFUZZ.2018.2870590
http://10.10.32.48:8080/jspui/handle/2008/2248
Appears in Collections:Research Publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.