IDR Logo

Please use this identifier to cite or link to this item:
Title: Comparative study of autogenous tungsten inert gas welding and tungsten arc welding with filler wire for dissimilar P91 and P92 steel weld joint
Authors: Pandey C.
Mahapatra M.M.
Kumar P.
Saini N.
Keywords: Charpy toughness
Tensile properties
Issue Date: 2018
Citation: 29
Abstract: Creep strength enhanced ferritic/martensitic 9Cr-1Mo-V-Nb (P91) steel is also designated as ASTM A335 used for out-of-core and in-core (piping, cladding, ducts, wrappers, and pressure vessel) of Gen IV reactors. In present investigation, the dissimilar weld joint of P91 and P92 steel were made using the autogenous tungsten inert gas (TIG) welding with single pass, double side pass and multi-pass gas tungsten arc (GTA) welding with filler wire. Microstructure evolution in sub-zones and mechanical properties of dissimilar welded joints were studied in as-welded and post weld heat treatment (PWHT) condition. Formation of ?-ferrite patches in weld fusion zone and heat affected zones (HAZs) and their influence on the mechanical behaviour of the welded joints were also studied. Presence of higher content of ferrite stabilizer in P92 steel have resulted the formation of ?-ferrite patches in weld fusion zone as well as HAZs. The ?-ferrite was observed in autogenous TIG welds joints. The ?-ferrite patches were formed in as-welded condition and remained in the microstructure after the PWHT. The ?-ferrite patches leads to reduction in Charpy toughness of autogenous TIG welds joint and also lower down the average hardness of weld fusion zone. Peak hardness and poor impact toughness were observed for autogenous TIG welds joint as compared to GTA welds. For microstructure characterization, field-emission scanning electron microscope (FESEM) with energy dispersive spectroscopy (EDS) and optical microscope were utilized. � 2017 Elsevier B.V.
Appears in Collections:Research Publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.