IDR Logo

Please use this identifier to cite or link to this item:
Title: Stationary distributions of the R[X]/R/1 cross-correlated queue
Authors: Panda G.
Banik A.D.
Chaudhry M.L.
Keywords: Cross-correlation
distributional Little�s law
idle periods
inter-departure time
Pad� approximation
queue length
virtual and actual waiting times
Issue Date: 2017
Abstract: We consider an infinite buffer single server queue wherein batch interarrival and service times are correlated having a bivariate mixture of rational (R) distributions, where R denotes the class of distributions with rational Laplace�Stieltjes transform (LST), i.e., ratio of a polynomial of degree at most n to a polynomial of degree n. The LST of actual waiting time distribution has been obtained using Wiener�Hopf factorization of the characteristic equation. The virtual waiting time, idle period (actual and virtual) distributions, as well as inter-departure time distribution between two successive customers have been presented. We derive an approximate stationary queue-length distribution at different time epochs using the Markovian assumption of the service time distribution. We also derive the exact steady-state queue-length distribution at an arbitrary epoch using distributional form of Little�s law. Finally, some numerical results have been presented in the form of tables and figures. � 2017 Taylor & Francis Group, LLC.
Appears in Collections:Research Publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.